首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   42篇
  国内免费   93篇
  315篇
  2024年   5篇
  2023年   8篇
  2022年   16篇
  2021年   7篇
  2020年   8篇
  2019年   11篇
  2018年   17篇
  2017年   9篇
  2016年   5篇
  2015年   13篇
  2014年   20篇
  2013年   12篇
  2012年   23篇
  2011年   26篇
  2010年   15篇
  2009年   12篇
  2008年   13篇
  2007年   8篇
  2006年   11篇
  2005年   13篇
  2004年   11篇
  2003年   5篇
  2002年   9篇
  2001年   6篇
  2000年   7篇
  1999年   9篇
  1998年   3篇
  1997年   1篇
  1993年   1篇
  1990年   1篇
  1979年   1篇
  1977年   1篇
  1956年   1篇
  1954年   1篇
  1953年   1篇
  1950年   1篇
  1949年   4篇
排序方式: 共有315条查询结果,搜索用时 0 毫秒
1.
以内蒙古大青山华北落叶松人工林为研究对象,通过树木年轮法和异速生长方程法,计算华北落叶松人工林生物量、碳密度及其年增量的年际变化,并分析碳密度年增量与气温、降水、湿度等气象因子的关系。研究发现:华北落叶松人工林碳密度随着林龄增加的变化曲线可用逻辑斯谛生长方程拟合,在1979—2016年,碳密度由1.05 t/hm~2增加到76.83 t/hm~2。华北落叶松人工林碳密度年增量存在显著的年际差异,总体上呈波动性的“慢-快-慢”趋势,碳密度年增量最高达到3.72 t hm-2 a-1,多年平均为2.05 t hm-2 a-1。华北落叶松人工林碳密度年增量与上年6月和当年6—8月的降水量显著正相关,与上年11月降水显著负相关;与上年11—12月、当年2月和12月的温度和大气相对湿度分别呈正、负相关;与上年7月、9月及当年8—9月的温度保持显著或极显著正相关。研究表明,温度、湿度和降水主要通过生长季的长短和土壤可利用水分及冬季的雪害冻害影响华北落叶松人工林的碳汇潜力,在未来该地区升温增湿的气候变化趋势下华北...  相似文献   
2.
王明  桑卫国 《生态科学》2020,39(1):164-175
根据2003-2014年气象数据和暖温带3种乔木(辽东栎、五角枫和核桃楸)和3种灌木(土庄绣线菊、毛叶丁香和六道木)的物候观测数据资料, 采用气候倾向率和回归分析等方法, 观察乔木和灌木物候变化特征的差异, 分析温度、降水以及乔木、灌木的物候变化趋势, 同时对气象因子与乔木和灌木物候期的相关关系进行研究。结果表明: ①研究期间, 北京东灵山平均气温呈不显著的上升趋势, 气候倾向率为0.200℃·10a–1, 春季(3–5月)和夏季(6-8月)温度显著上升; 降水量呈下降趋势, 平均减少71.630 mm·10a–1, 总体呈暖、干的趋势。②3种乔木的生长季长度都缩短, 辽东栎、五角枫和核桃楸平均生长季长度分别缩短50.70 d·10 a–1、29.83 d·10a–1和22.36 d·10a–1。3种灌木的生长季长度也都缩短, 土庄绣线菊、毛叶丁香和六道木的平均生长季长度分别缩短42.55 d·10a–1、42.76 d·10a–1和38.15 d·10a–1。乔木和灌木的物候变化趋势相同, 整体表现为春季物候推迟, 秋季物候提前, 生长季长度都缩短且生长季长度相差不大。乔木和灌木都表现出芽期推迟最明显, 每10年推迟达19天以上。③乔木和灌木各物候期与气温总体表现为负相关, 即气温升高, 物候期提前, 其相关性显示出夏季(6-8月)温度对植被物候期影响较大, 夏季温度与各物候期表现为正相关, 即夏季温度升高, 物候期推迟。同时乔木和灌木与总体降水没有明显的相关关系, 但秋季物候与不同时段降水表现不同的相关性, 由此可知夏季温度变化对木本植物春季物候(出芽期、展叶期和首花期)的影响更大, 而秋季物候(叶变色期和落叶期)受温度和降水共同影响。  相似文献   
3.
空气负离子(NAI)是衡量一个地区空气清洁度的重要指标,对人体的心理健康和生理机能具有重要的调节作用.植被光合过程中光电效应是NAI产生的重要来源和影响因素,但光电效应极其微弱而难以直接监测,而植物电信号是间接反映光电效应的重要指标,以往研究多侧重在不同森林群落中NAI的时空变化特征及其与气象因素的关系,目前关于NAI...  相似文献   
4.
5.
大树蛙与斑腿树蛙的繁殖与驯养   总被引:3,自引:0,他引:3  
1997~2000年,在广州动物园生态蛙蟾馆观察与研究了笼养条件下大树蛙和斑腿树蛙的繁殖行为和驯养过程,比较了两种树蛙繁殖生态的差别。  相似文献   
6.
二氧化硫对地衣中共生藻菌营养关系影响研究   总被引:5,自引:1,他引:5  
为探讨地衣对大气污染特别敏感的原因 ,分离淡腹黄梅衣 (Xanthoparmelliamexicana)的共生藻和共生真菌 ,并重新合成地衣 .研究了地衣及纯化培养的藻和菌在SO2 污染短期胁迫下的生理反应 .结果表明 ,叶绿素a比叶绿素b易受伤害 ;叶绿素对 0 .5mg·L-1的熏气最敏感 ,水溶液暴露时叶绿素PQa值的下降与SO2 的吸收量有相关性 .地衣中酸性磷酸酶活性主要由共生藻所决定 .丙二醇含量在共生藻和菌以及地衣样品中无显著差异 ;还原型谷胱甘肽GSH含量在共生菌中明显高于共生藻 ,并与SO2 胁迫强度密切相关 .可以作为地衣过氧化状态和受损的生物标志物 .共生真菌承担了地衣主要的抗氧化任务 ,由于物质与能量的消耗 ,共生藻比共生菌更容易受到伤害 .  相似文献   
7.
The application of sensory methodology for measuring deodorizing effect of an air conditioner equipped with electric plasma was introduced. Deodorizing effect was measured using chemical and sensory methods at different time (0, 30 and 60 min) and mode (control, blowing and cooling) of an air conditioner. Smoke from a roll of cigarette in a closed room was used as a source of odor and the concentrations of acetic acid and ammonia were measured as odorous chemical components. As one of the sensory methods triangle test was used and as a first step to obtain deodorizing effects by triangle test, the threshold of each panelist was obtained as the log dilution ratio of odor concentration at which the difference from odorless air was detected. The odor concentration at each time and mode was calculated using the threshold of the panel and the deodorizing effect was obtained on the basis of the odor concentration. In addition to a triangle test, scaling methods such as category scaling or magnitude estimation were used to measure deodorizing effect of an air conditioner. Deodorizing effects by scaling methods were calculated based on odor intensity with time at each mode. The regression analysis was done between the efficacy of deodorizing effect by sensory test and those by acetic acid and ammonia, the R2 values of the regression equations for triangle test, category scale, and magnitude estimation were 0.84, 0.72 and 0.69, respectively. Deodorizing effect by triangle test explained the decrease of acetic acid and ammonia better than those by category scaling or magnitude estimation while high cost and time consuming labor involved in triangle tests reduced the merit. The results of this study demonstrated that various sensory methods could be used to measure deodorizing effect of air conditioners and further researches on fast and reliable methods are needed to establish the official procedures.  相似文献   
8.
太空飞行所致的肌萎缩和重力感知的分子机制至今尚不清楚.研究太空飞行对秀丽隐杆线虫(C.elegans)体壁肌细胞结构和功能的影响.经过近15天太空飞行后对其生存率和运动能力进行了观察,并检测了5个重要的肌相关基因的表达和3种蛋白质含量.太空研究是在动物的整体水平进行的,而不是就单个细胞的研究.经历太空飞行后线虫生存率没有明显变化,但运动频率变慢,爬行轨迹也发生了改变,提示线虫运动功能出现障碍,这些数据揭示:微重力下秀丽线虫肌肉发育发生了变化.肌球蛋白A(myosin A)免疫荧光染色观察发现,太空飞行组肌纤维面积缩小,肌细胞致密体(dense-body)荧光亮度下降.这些形态学观察直接提示太空组线虫出现了肌萎缩.但是,肌动蛋白(F-actin)荧光染色显示两组并无明显差别.基因表达水平的分析结果显示,在太空飞行组动物中dys-1表达明显上调,同时hlh-1,myo-3,unc-54和egl—19基因表达下调.抗肌萎缩蛋白(dystrophin,由dys—1编码)是抗肌萎缩蛋白-糖蛋白复合物(DGC)的主要组成成分,而该复合物在微重力下增多,提示肌细胞是为了接受更多的力学刺激以维持细胞内外的力学平衡,所以该复合物在肌细胞的重力感知中起关键作用.基因hlh-1,myo-3,unc-54和egl-19表达下调,说明它们分别从结构和功能两个途径促进了微重力性肌萎缩的发生.最后,Western blot结果提示,太空组线虫体壁肌内肌球蛋白A减少,进一步确证了太空飞行中线虫有肌萎缩发生.  相似文献   
9.
用树木年代学方法研究了近50年来气候变化对长白山自然保护区两种广泛分布的重要乔木树种红松(Pinus koraiensis)和鱼鳞云杉(Picea jezoensis var. komarovii)分布上限树木径向生长的影响, 发现红松年轮宽度具有与温度升高相一致的趋势, 而鱼鳞云杉年轮宽度则出现随温度升高而下降的“分离现象”。对水热条件的正响应是分布上限红松年表与温度保持一致的关键: 生长季的温度和降水的增加对上限红松的生长有促进作用, 且二者对树木生长的有利效应有相互促进的现象; 生长季的延长也有利于红松的生长。升温导致的水分胁迫是造成上限分布的鱼鳞云杉年轮宽度与温度变化趋势相反的重要因素: 分布上限的鱼鳞云杉年表与大多数温度指标均呈负相关关系; 随着温度升高, 年表与年降水量尤其是春季降水量的相关性逐渐由负转正; 各月的高温以及生长季中后期的少雨是形成上限鱼鳞云杉窄轮的主要气候因素, 而较低的各月温度以及生长季后期充足的降水则有利于上限鱼鳞云杉的生长; 此外, 生长季长度没有变化也可能是造成鱼鳞云杉年表序列对温度变化敏感性下降的重要因素。  相似文献   
10.
评价黑大蒜提取物分别与头孢唑林或庆大霉素联合应用,对金黄色葡萄球菌和大肠埃希菌的体外抗菌效应。采用液体稀释法分别测定黑大蒜提取物对金黄色葡萄球菌和大肠埃希菌的最低抑菌浓度(MIC)。采用棋盘法设计,微量肉汤稀释法测定黑大蒜提取物联合头孢唑林或庆大霉素对金黄色葡萄球菌和大肠埃希菌的MIC,并计算部分抑菌浓度(FIC指数)。测定黑大蒜提取物对金黄色葡萄球菌和大肠埃希菌的时间-杀菌曲线。黑大蒜提取物对金黄色葡萄球菌的MIC为256μg/mL,黑大蒜提取物对大肠埃希菌的MIC为256μg/mL。时间-杀菌曲线结果显示黑大蒜提取物对金黄色葡萄球菌和大肠埃希菌的抑菌作用呈现较强的浓度依赖性。黑大蒜提取物联合头孢唑林后对金黄色葡萄球菌的FIC指数为0.75;黑大蒜提取物联合庆大霉素后对大肠埃希菌的FIC指数为0.5。黑大蒜提取物与头孢唑林或庆大霉素联合用药,可明显降低抗生素对金黄色葡萄球菌和大肠埃希菌的MIC,表现为相加和协同效应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号