首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2006年   1篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1990年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Abstract 1. We monitored three different‐sized wood ant (Formica aquilonia Yarrow) mounds over a 3‐year period in Finnish boreal forests dominated by Norway spruce (Picea abies Karst.), to assess the seasonal temperature dependency of ant activity. Additionally, we also monitored Norway spruce trees around the mounds for descending honeydew foragers. 2. The amount of collected honeydew and prey and its composition, as well as the carbon (C), nitrogen (N), and phosphorus (P) in honeydew and invertebrate prey was also investigated. 3. The number of warm days (average temperature above 20 °C) and the amount of precipitation differed among the years. Ant activity at the mounds (but not on the trees) was highly correlated with air temperature throughout the ant‐active season (May–September), but ant activity in spring and autumn was lower than in summer at similar temperatures. During all 3 years, honeydew played a major role in wood ant nutrition (78–92% of dry mass). Invertebrate prey was mainly Diptera (on average 26.2%), Coleoptera (12.5%), Aphidina (9.3%), and Arachnoida (8.5%). 4. The total amounts of C, N, and P input brought into the ant mounds in the form of food (both honeydew and prey) on the stand level were 12.6–39.0, 1.6–4.6 and 0.1–0.4 kg ha?1 year?1, respectively, which is equivalent to 2–6%, 12–33% and 27–58% of the fluxes in annual needle litterfall in typical boreal Norway spruce forests. Thus, wood ants can play a significant role in short term and local N and P cycling of boreal forest ecosystems.  相似文献   
2.
Optimization of cryptic coloration in heterogeneous habitats   总被引:3,自引:0,他引:3  
We present a theoretical approach to the optimization of crypsis in heterogeneous habitats. Our model habitat consists of two different microhabitats, and the optimal combination of crypsis in the microhabitats is supposed to maximize the probability of escaping detection by a predator. The probability of escaping detection for a prey is a function of: (i)degree of crypsis, (ii) probability of occurrence in the microhabitats and (iii) probability of encountering a predator in the microhabitats. Because crypsis is background-specific there is a trade-off between crypsis in two visually different microhabitats. Depending on the nature of the trade-off, the optimal coloration is either a compromise between the requirements of the differing microhabitats or entirely adapted to only one of them. An increased risk of predation in one of the microhabitats favours increased crypsis in that microhabitat. Because the trade-off constrains possible optimal solutions, it is not possible to predict the optimal coloration only from factors (i)-(iii). However, habitat choice may fundamentally change the situation. If minimizing predation risk does not incur any costs, the prey should exclusively prefer the microhabitat where it has a lower probability of encountering a predator and better crypsis. The implications of these results for variation in cryptic coloration and polymorphism are discussed.  相似文献   
3.
To study the effects of elevated ozone concentration on methane dynamics and a sedge species, Eriophorum vaginatum, we exposed peatland microcosms, isolated by coring from an oligotrophic pine fen, to double ambient ozone concentration in an open‐air ozone exposure field for four growing seasons. The field consists of eight circular plots of which four were fumigated with elevated ozone concentration and four were ambient controls. At the latter part of the first growing season (week 33, 2003), the methane emission was 159±14 mg CH4 m?2 day?1 (mean±SE) in the ozone treatment and 214±8 mg CH4 m?2 day?1 under the ambient control. However, towards the end of the experiment the ozone treatment slightly, but consistently, enhanced the methane emission. At the end of the third growing season (2005), microbial biomass (estimated by phospholipid fatty acid biomarkers) was higher in peat exposed to ozone (1975±108 nmol g?1 dw) than in peat of the control microcosms (1589±115 nmol g?1 dw). The concentrations of organic acids in peat pore water showed a similar trend. Elevated ozone did not affect the shoot length or the structure of the sedge E. vaginatum leaves but it slightly increased the total number of sedge leaves towards the end of the experiment. Our results indicate that elevated ozone concentration enhances the general growth conditions of microbes in peat by increasing their substrate availability. However, the methane production did not reflect the increase in the concentration of organic acids, probably because hydrogenotrophic methane production dominated in the peat studied. Although, we used isolated peatland microcosms with limited size as study material, we did not find experimental factors that could have hampered the basic conclusions on the effects of ozone.  相似文献   
4.
The present study investigated how variation in mating distribution in time and among males influences the operational sex ratio (OSR) with a simulation inspired by paternally caring fish. Varying (1) the potential reproductive rate of each sex, (2) the mating distribution among males, and (3) the length of male mating phase, we created different mating patterns. In each case, we searched for the adult sex ratio that resulted in an OSR of 50% (where sex-roles switch). This approach enabled a comparison with a previous model. We found that the OSR was influenced by the distribution of matings in time and among males when the male mating phase was limited by a parental phase. Furthermore, the mating dynamics were shaped by the fact that the numbers of males and females and their capacities for collateral investment affected OSR immediately from the start of the reproductive season, whereas their times-out had a delayed effect on OSR.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 551–559.  相似文献   
5.
he status of sandflies as vectors of cutaneous leishmaniasis in the southern Jordan Valley was investigated during 1992. Sandflies were collected from domestic habitats and from burrows of Psammomys obesus . Of 686 Phlebotomus papatasi females collected from burrows, fourteen harboured promastigotes in their guts. On the other hand, none of 1446 P.papatasi females collected from domestic habitats were found infected. The highest infection rate (5.5%) was recorded in November at the end of the sandfly season. Six leishmanial stocks isolated from P.papatasi females were typed by cellulose acetate electrophoresis using the six enzymes G6PDH, 6PGDH, PGI, PGM, FK and ME. Five of the leishmanial stocks were identical to a Leishmania major reference strain (MHOMISU/73/5-ASKH). The sixth isolate was a 6PGDH variant of L.major . These findings present the first direct evidence of the role of P.papatasi as a vector of L.major in Jordan.  相似文献   
6.
In marine ecosystems, pelagic copepods, chaetognaths and jellyfish play a key role in matter and energy flow. While copepods support most food webs and the biological pump of carbon into the deep ocean, chaetognaths and jellyfish may affect the strength of the top-down control upon plankton communities. In this study, we show that the main events in the long-term variability of these functional groups in the Northwestern Mediterranean were tightly linked to changes of climate forcing of the North Atlantic sector. Large-scale climate forcing has altered the pelagic food-web dynamics through changes in biological interactions, competition and predation, leading to substantial changes manifested as bursts or collapses in zooplankton populations, and consequently to a major change ca. 1987. These events become more frequent in the 1980s and the early 1990s in the studied zooplankton functional groups suggesting a shift in the functioning of the pelagic ecosystem. The environmental modifications and the results reported here are therefore, indicators of a regime change pointing to a more regeneration-dominated system in the study area. We suggest a chain of mechanisms, whereby climate variation has modified the long-term dynamics of pelagic copepods, chaetognaths and jellyfish in the Ligurian Sea.  相似文献   
7.
1. We analysed the phospholipid fatty acid (PLFA) profiles of seston and of the dominant zooplankter, Daphnia longispina, through the open water period in a small, dystrophic lake to investigate seasonal variation in the diet of Daphnia. Phytoplankton, heterotrophic bacteria, green sulphur bacteria and methane‐oxidizing bacteria (MOB) were all present in the water column of the lake, and previous studies have indicated that vertically migrating Daphnia can exploit all these potential food sources. 2. For adult Daphnia, although there was some correspondence between the PLFA profile of Daphnia and the concurrent seston PLFA profile, strongest correlations were between the Daphnia PLFA profile and those of potential food sources determined 7 days earlier. This interval presumably reflects the time it takes for adult Daphnia to turn over their fatty acid pool. 3. A correlation between the concentration of polyunsaturated fatty acids (PUFAs) in the epi‐ and metalimnion and measured primary production indicated that, within the total PLFA fraction, PUFAs can be useful biomarkers for phytoplankton in food‐web studies. Algal PUFAs contributed appreciably to total PLFAs in adult Daphnia during spring and summer, but less so in autumn. 4. Daphnia in the lake actually reached their highest biomass in autumn, when methanotrophic activity was also highest, and the highest magnitude of MOB‐specific PLFAs was recorded in both adult and juvenile Daphnia. A strong relationship existed between δ13C values of Daphnia reported previously and the proportion of MOB‐specific PLFAs in Daphnia. Autumnal mixing evidently stimulates bacterial oxidation of methane from the hypolimnion, and exploitation of the methanotrophic bacteria sustains a high Daphnia population late in the season. 5. Our results show that the PLFA composition of freshwater zooplankton like Daphnia corresponds rather well to that of their in situ diet of phytoplankton and bacteria, with a lag period of around 1 week in the case of adult animals. The PLFA profile of seston revealed the dominant available food sources, and relating these to the Daphnia PLFA profile provided insights into seasonal changes in Daphnia diet.  相似文献   
8.
9.
Understanding the ultimate causes for the presence of polymorphisms within populations requires knowledge of how the expression of discrete morphs is regulated. In the present study, we explored the determination mechanism of a colour dimorphism in larvae of the butterfly Pararge xiphia (Satyrinae: Nymphalidae) with the ultimate aim of understanding its potential adaptive value. Last-instar larvae of P. xiphia develop into either a green or a brown morph, although all individuals are invariably green during the preceding three instars. A series of laboratory experiments reveal that morph development is strongly environmentally dependent and not the result of alternative alleles at one locus. Photoperiod, temperature, and in particular larval density, all influenced morph determination. The strong effect of a high larval density in inducing the brown morph parallels other known cases of density-dependent melanization in Lepidopteran larvae. Because melanization is often correlated with increased immune function, this type of determination mechanism is expected to be adaptive. However, the ecology and behaviour of P. xiphia larvae suggests that increased camouflage under high-density conditions may be an additional adaptive explanation. We conclude that the colour dimorphism of P. xiphia larvae is determined by a developmental threshold that is influenced both by heredity and by environmental conditions, and that selection for increased immune function and camouflage under high-density conditions may be responsible for maintaining the dimorphism.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 256–266.  相似文献   
10.
We investigated soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) exchanges in an age‐sequence (4, 17, 32, 67 years old) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada, for the period of mid‐April to mid‐December in 2006 and 2007. For both CH4 and N2O, we observed uptake and emission ranging from ?160 to 245 μg CH4 m?2 h?1 and ?52 to 21 μg N2O m?2 h?1, respectively (negative values indicate uptake). Mean fluxes from mid‐April to mid‐December across the 4, 17, 32, 67 years old stands were similar for CO2 fluxes (259, 246, 220, and 250 mg CO2 m?2 h?1, respectively), without pattern for N2O fluxes (?3.7, 1.5, ?2.2, and ?7.6 μg N2O m?2 h?1, respectively), whereas the uptake rates of CH4 increased with stand age (6.4, ?7.9, ?10.8, and ?23.3 μg CH4 m?2 h?1, respectively). For the same period, the combined contribution of CH4 and N2O exchanges to the global warming potential (GWP) calculated from net ecosystem exchange of CO2 and aggregated soil exchanges of CH4 and N2O was on average 4%, <1%, <1%, and 2% for the 4, 17, 32, 67 years old stand, respectively. Soil CO2 fluxes correlated positively with soil temperature but had no relationship with soil moisture. We found no control of soil temperature or soil moisture on CH4 and N2O fluxes, but CH4 emission was observed following summer rainfall events. LFH layer removal reduced CO2 emissions by 43%, increased CH4 uptake during dry and warm soil conditions by more than twofold, but did not affect N2O flux. We suggest that significant alternating sink and source potentials for both CH4 and N2O may occur in N‐ and soil water‐limited forest ecosystems, which constitute a large portion of forest cover in temperate areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号