首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2071篇
  免费   120篇
  国内免费   3篇
  2194篇
  2023年   13篇
  2022年   28篇
  2021年   29篇
  2020年   19篇
  2019年   24篇
  2018年   35篇
  2017年   30篇
  2016年   39篇
  2015年   61篇
  2014年   78篇
  2013年   137篇
  2012年   126篇
  2011年   116篇
  2010年   83篇
  2009年   56篇
  2008年   108篇
  2007年   101篇
  2006年   73篇
  2005年   78篇
  2004年   85篇
  2003年   72篇
  2002年   64篇
  2001年   48篇
  2000年   53篇
  1999年   43篇
  1998年   15篇
  1997年   15篇
  1992年   30篇
  1991年   29篇
  1990年   21篇
  1989年   19篇
  1988年   35篇
  1987年   17篇
  1986年   30篇
  1985年   19篇
  1984年   20篇
  1983年   21篇
  1981年   15篇
  1979年   20篇
  1978年   16篇
  1977年   24篇
  1975年   18篇
  1974年   15篇
  1973年   21篇
  1971年   18篇
  1970年   14篇
  1969年   21篇
  1968年   15篇
  1967年   13篇
  1966年   15篇
排序方式: 共有2194条查询结果,搜索用时 15 毫秒
1.
2.
The bacterial H+-translocating NADH:quinone oxidoreductase (NDH-1) catalyzes electron transfer from NADH to quinone coupled with proton pumping across the cytoplasmic membrane. The NuoK subunit (counterpart of the mitochondrial ND4L subunit) is one of the seven hydrophobic subunits in the membrane domain and bears three transmembrane segments (TM1–3). Two glutamic residues located in the adjacent transmembrane helices of NuoK are important for the energy coupled activity of NDH-1. In particular, mutation of the highly conserved carboxyl residue (KGlu-36 in TM2) to Ala led to a complete loss of the NDH-1 activities. Mutation of the second conserved carboxyl residue (KGlu-72 in TM3) moderately reduced the activities. To clarify the contribution of NuoK to the mechanism of proton translocation, we relocated these two conserved residues. When we shifted KGlu-36 along TM2 to positions 32, 38, 39, and 40, the mutants largely retained energy transducing NDH-1 activities. According to the recent structural information, these positions are located in the vicinity of KGlu-36, present in the same helix phase, in an immediately before and after helix turn. In an earlier study, a double mutation of two arginine residues located in a short cytoplasmic loop between TM1 and TM2 (loop-1) showed a drastic effect on energy transducing activities. Therefore, the importance of this cytosolic loop of NuoK (KArg-25, KArg-26, and KAsn-27) for the energy transducing activities was extensively studied. The probable roles of subunit NuoK in the energy transducing mechanism of NDH-1 are discussed.  相似文献   
3.
A respiration-deficient (RD) mutant was isolated from the petite-negative, salt-tolerant yeast Zygosaccharomyces rouxii. One strain among sixteen glycerol-non-utilizing mutants exhibited vigorous liberation of CO2 but no uptake of O2. Furthermore, this strain lacked cytochrome aa3 and had a reduced level of cytochrome b. The few mitochondria found in cells of this strain contained few or no cristae. Salt tolerance and intracellular accumulation of glycerol by the RD strain were almost equal to that of the wild-type strain in media containing NaCl up to 2.5 M. In media with more than 3 M NaCl, the growth of the RD mutant was retarded and the intracellular accumulation of glycerol was depressed in spite of ample production.  相似文献   
4.
Ca2+ binding to calmodulin was measured in the presence of mastoparan or caldesmon fragment. Mastoparan and caldesmon fragment were used as model compounds of enzymes and cytoskeleton proteins, respectively, working as the target of calmodulin. Although the Ca2+ bindings of the two globular domains of calmodulin occur independently in the absence of the target peptide (or proteins), mastoparan and caldesmon fragment increased the affinity of Ca2+ and, at the same time, produced the positive cooperative Ca2+ bindings between the two domains. The result of Ca2+ binding was compared with 1H NMR spectra of calmodulin in the presence of equimolar concentration of mastoparan. It is known that a conformation change of the C-terminal half-region (C-domain) occurs by the Ca2+ binding to C-domain. A further change in conformation of C-domain was demonstrated by the Ca2+ binding to the N-terminal half-region (N-domain) in the presence of mastoparan. It indicates that the two domains of calmodulin get into communication with each other in the associated state with the target, and we concluded that the Ca2+ binding to the N-domain is responsive to the development of calmodulin function.  相似文献   
5.
We present a new examination of the EPR redox titration data for the tetraheme cytochrome c3 from Desulfovibrio vulgaris Miyazaki. Our analysis includes the contribution of the interaction potentials between the four redox sites and is based on the model previously developed for the study of cytochrome c3 from Desulfovibrio desulfuricans Norway. We observed, as for D. desulfuricans Norway cytochrome c3, that the conformation of the heme with the lowest redox potential, heme 4, is sensitive to the redox state of the heme with the highest potential, heme 1. However in D. vulgaris Miyazaki cytochrome c3 spectral simulations show that heme 4 is present in two conformational states which interconvert partially when heme 1 is reduced. The sets of redox parameters which satisfy the fitting procedure of the titration curves are in the following domain: -250 mV less than or equal to e41 less than or equal to -220 mV, -325 mV less than or equal to e2 less than or equal to -320 mV, -335 mV less than or equal to e3 less than or equal to -330 mV, -360 mV less than or equal to e4 less than or equal to -355 mV, -5 mV less than or equal to I12 less than or equal to 20 mV, -10 mV less than or equal to I13 less than or equal to 5 mV, -15 mV less than or equal to I23 less than or equal to -5 mV, -15 mV less than or equal to I24 less than or equal to -10 mV, -25 mV, less than or equal to I34 less than or equal to -15 mV. As in D. desulfuricans Norway cytochrome c3 the interactions are moderate. Simple electrostatic considerations suggest that these moderate values could be related to the large accessibility of the hemes to the solvent. Our work does not confirm the existence of a cooperative interaction between heme 2 and heme 3 which has been proposed on the basis of electrochemical measurements.  相似文献   
6.
The NADH-quinone oxidoreductases of the bacterial respiratory chain could be divided in two groups depending on whether they bear an energy-coupling site. Those enzymes that bear the coupling site are designated as NADH dehydrogenase 1 (NDH-1) and those that do not as NADH dehydrogenase 2 (NDH-2). All members of the NDH-1 group analyzed to date are multiple polypeptide enzymes and contain noncovalently bound FMN and iron-sulfur clusters as prosthetic groups. The NADH-ubiquinone-1 reductase activities of NDH-1 are inhibited by rotenone, capsaicin, and dicyclohexylcarbodiimide. The NDH-2 enzymes are generally single polypeptides and contain non-covalently bound FAD and no iron-sulfur clusters. The enzymatic activities of the NDH-2 are not affected by the above inhibitors for NDH-1. Recently, it has been found that both of these types of the NADH-quinone oxidoreductase are present in a single strain of bacteria. The significance of the occurrence of these two types of enzymes in a single organism has been discussed in this review.  相似文献   
7.
Humans, other primates, and guinea pigs are missing an enzyme L-gulono-gamma-lactone oxidase which catalyzes the last step of L-ascorbic acid biosynthesis. We have recently isolated a cDNA encoding this enzyme of the rat (T. Koshizaka, M. Nishikimi, T. Ozawa, and K. Yagi (1988) J. Biol. Chem. 263, 1619-1621). Northern blot hybridization using this cDNA as a probe demonstrated that guinea pigs lack mRNA for L-gulono-gamma-lactone oxidase. Nevertheless, existence of a DNA sequence related to this enzyme in the genome of this animal was shown by Southern blot hybridization. The human genome was also found to contain a sequence that is hybridizable with the cDNA probe; however, the degree of hybridization was less than those of hybridization with the L-gulono-gamma-lactone oxidase genes of animals possessing the enzyme, suggesting that the human L-gulono-gamma-lactone oxidase gene has diverged more rapidly than the genes of L-ascorbic acid-synthesizing species. This hypothesis was confirmed by comparison of a partial nucleotide sequence of the human gene with that of the rat one. The L-gulono-gamma-lactone oxidase-related sequences in the guinea pig and human genomes may represent the remnants of the gene of the enzyme that were once active but became nonfunctional during the course of evolution.  相似文献   
8.
Endothelin: a new inhibitor of renin release   总被引:10,自引:0,他引:10  
Endothelin is a recently-discovered vasoconstrictor peptide which is produced by endothelium and acts on vascular smooth muscle cells. At present its actions on other organs or cells are unknown. We studied the effect of endothelin on renin release in a dynamic superfusion system of dispersed rat juxtaglomerular (JG) cells. Endothelin in concentrations of 10(-11) M or more inhibited renin release dose-dependently and this inhibitory action vanished in the absence of extracellular Ca. It is suggested that endothelin is an inhibitory regulator of renin secretion from JG cells and its action is Ca-dependent.  相似文献   
9.
A simple and rapid preparation method for apoaspartate aminotransferase from Escherichia coli B was developed. A crude extract of the bacterial cells was treated batchwise with DEAE-cellulose. The enzyme fraction obtained was then applied to a pyridoxamine-Sepharose column. Apoaspartate aminotransferase was eluted with 50 mM potassium phosphate buffer (pH 7.0), and found to be electrophoretically homogeneous. The apoenzyme preparation thus obtained showed very low holoenzyme activity (only 0.4% of the activity seen in the fully saturated condition with pyridoxal 5'-phosphate) and was successfully used for assaying pyridoxal and pyridoxamine 5'-phosphate.  相似文献   
10.
beta-D-Glucosidase was purified from seeds of Japanese cycad by dialysis, chromatography on CM-Sepharose CL-6B, gel filtration on Biogel P-200, and chromatofocusing. By chromatofocusing, beta-D-glucosidase was separated into four components whose isoelectric points were in a very narrow range (7.43-7.68). All these components were glycoproteins. The main component (pI = 7.59) was homogeneous on gel isoelectric focusing, and was crystallized from ammonium sulfate solution. The molecular weight of the crystalline preparation was determined to be 137,000 by gel filtration, and 67,000 by sodium dodecylsulfate polyacrylamide gel electrophoresis, indicating the main component was composed of two subunits with the same molecular weight. The amino acid composition and sugar content of the main component were also determined. All four components hydrolyzed not only o-nitrophenyl beta-D-glucopyranoside but also o-nitrophenyl beta-D-galactopyranoside, o-nitrophenyl beta-D-fucopyranoside, and o-nitrophenyl beta-D-xylopyranoside. Hydrolysis rates of each substrate by the four components were quite similar. Mixed substrate experiments using crystalline preparation proved that a single active site was responsible for the hydrolysis of these substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号