首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2355篇
  免费   133篇
  国内免费   6篇
  2022年   12篇
  2021年   23篇
  2020年   10篇
  2019年   17篇
  2018年   14篇
  2017年   22篇
  2016年   39篇
  2015年   55篇
  2014年   46篇
  2013年   133篇
  2012年   78篇
  2011年   107篇
  2010年   57篇
  2009年   66篇
  2008年   102篇
  2007年   108篇
  2006年   96篇
  2005年   120篇
  2004年   100篇
  2003年   115篇
  2002年   100篇
  2001年   103篇
  2000年   86篇
  1999年   89篇
  1998年   26篇
  1997年   30篇
  1996年   18篇
  1995年   23篇
  1994年   20篇
  1993年   31篇
  1992年   42篇
  1991年   49篇
  1990年   56篇
  1989年   48篇
  1988年   52篇
  1987年   39篇
  1986年   47篇
  1985年   41篇
  1984年   29篇
  1983年   27篇
  1982年   20篇
  1981年   22篇
  1980年   17篇
  1979年   21篇
  1978年   16篇
  1977年   12篇
  1976年   14篇
  1974年   15篇
  1973年   11篇
  1966年   9篇
排序方式: 共有2494条查询结果,搜索用时 15 毫秒
1.
The Caenorhabditis elegans excretory cell extends tubular processes, called canals, along the basolateral surface of the epidermis. Mutations in the exc-5 gene cause tubulocystic defects in this canal. Ultrastructural analysis suggests that exc-5 is required for the proper placement of cytoskeletal elements at the apical epithelial surface. exc-5 encodes a protein homologous to guanine nucleotide exchange factors and contains motif architecture similar to that of FGD1, which is responsible for faciogenital dysplasia. exc-5 interacts genetically with mig-2, which encodes Rho GTPase. These results suggest that EXC-5 controls the structural organization of the excretory canal by regulating Rho family GTPase activities.  相似文献   
2.
Three types of cloned cDNA sequences for rat low molecular weight prekininogens were isolated and determined by molecular cloning and sequence analysis. The deduced amino acid sequences indicated that one, termed K-prekininogen, represents the counterpart of the known low molecular weight prekininogen present in other mammals, while the other two, called T-prekininogens, contain a novel T-kinin sequence which was recently identified from rat plasma. Although T- and K-prekininogens are highly homologous with each other, both of the T-prekininogens contain methionine, instead of arginine or lysine, as an amino acid preceding T-kinin and exhibit two consecutive amino acid deletions in the preceding region of T-kinin as compared with K-prekininogen. The former finding accounts for the previous observation of strong resistance of T-kininogens to cleavage with trypsin or kallikreins, while the latter finding has been explained by the structural analysis of genomic clones in which T-kinin-coding exon is contracted at its intron junction. A partial nucleotide sequence reported recently for the rat major acute phase protein (alpha 1-MAP) mRNA was found to be extremely related to the corresponding portion of the rat T-prekininogen mRNA. Furthermore, consistent with the previous report of the structural identity of major acute phase protein and alpha 1-cysteine proteinase inhibitor, kininogen closely resembles not only the former but also the latter in the amino acid compositions. The interrelationship among the triad of these proteins has been discussed.  相似文献   
3.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
4.
Abstract

The stability of clathrate hydrates encaging highly polar guests has been investigated in order to explain the experimental observation that some amines form clathrate hydrates but alcohols act as inhibitor to hydrate formation. We choose methylamine and methanol as guest species and examine the stable structure, at which the total potential energy has a minimum value. At the local minima of those two hydrates, the potential energies of water-water and guest-water, and their hydrogen bonded networks are compared. It is found that methanol does not retain the host lattice structure, while the host-network structure is kept in the presence of methylamine. It is shown that the difference in the magnitude of the partial charge on the hydrogen atom between the hydroxyl and amino groups plays a much more significant role on the stability of both clathrate hydrates than the difference in molecular geometry. This is supported from the result of a methylamine-like model that has the same partial charges on the atoms in the hydrophilic site as methanol.  相似文献   
5.
We discovered a new cataract mutation, kfrs4, in the Kyoto Fancy Rat Stock (KFRS) background. Within 1 month of birth, all kfrs4/kfrs4 homozygotes developed cataracts, with severe opacity in the nuclei of the lens. In contrast, no opacity was observed in the kfrs4/+ heterozygotes. We continued to observe these rats until they reached 1 year of age and found that cataractogenesis did not occur in kfrs4/+ rats. To define the histological defects in the lenses of kfrs4 rats, sections of the eyes of these rats were prepared. Although the lenses of kfrs4/kfrs4 homozygotes showed severely disorganised fibres and vacuolation, the lenses of kfrs4/+ heterozygotes appeared normal and similar to those of wild-type rats. We used positional cloning to identify the kfrs4 mutation. The mutation was mapped to an approximately 9.7-Mb region on chromosome 7, which contains the Mip gene. This gene is responsible for a dominant form of cataract in humans and mice. Sequence analysis of the mutant-derived Mip gene identified a 5-bp insertion. This insertion is predicted to inactivate the MIP protein, as it produces a frameshift that results in the synthesis of 6 novel amino acid residues and a truncated protein that lacks 136 amino acids in the C-terminal region, and no MIP immunoreactivity was observed in the lens fibre cells of kfrs4/kfrs4 homozygous rats using an antibody that recognises the C- and N-terminus of MIP. In addition, the kfrs4/+ heterozygotes showed reduced expression of Mip mRNA and MIP protein and the kfrs4/kfrs4 homozygotes showed no expression in the lens. These results indicate that the kfrs4 mutation conveys a loss-of-function, which leads to functional inactivation though the degradation of Mip mRNA by an mRNA decay mechanism. Therefore, the kfrs4 rat represents the first characterised rat model with a recessive mutation in the Mip gene.  相似文献   
6.
7.
The full-length bovine lung prostaglandin(PG) F synthase cDNA was constructed from partial cDNA clones and ligated into bacterial expression vector pUC8 to develop expression plasmid pUCPF1. This plasmid permitted the synthesis of bovine lung PGF synthase in Escherichia coli. The recombinant bacteria overproduced a 36-KDa protein that was recognized by anti-PGF synthase antibody, and the expressed protein was purified to apparent homogeneity. The expressed protein reduced not only carbonyl compounds including PGD2 and phenanthrenequinone but also PGH2; and the Km values for phenanthrenequinone, PGD2, and PGH2 of the expressed protein were 0.1, 100, and 8 microM, respectively, which are the same as those of the bovine lung PGF synthase. The protein produced PGF2 alpha from PGH2, and 9 alpha, 11 beta-PGF2 from PGD2 at different active sites. Moreover, the structure of the purified protein from Escherichia coli was essentially identical to that of the native enzyme in terms of C-terminal sequence, sulfhydryl groups, and CD spectra except that the nine amino acids provided by the lac Z' gene of the vector were fused to the N-terminus. These results indicate that the expressed protein is essentially identical to bovine lung PGF synthase. We confirmed that PGF synthase is a dual function enzyme catalyzing the reduction of PGH2 and PGD2 on a single enzyme and that it has one binding site for NADPH.  相似文献   
8.
9.
Using a digital imaging fluorescence microscope, we have detected a rapid transient increase in the free cytosolic calcium concentration in a single rat basophilic leukemia cell (RBL-2H3) after antigen stimulation. Calcium ions were transported very rapidly (within 1 s) after a lag time (about 10 s at 37 degrees C) from the external environment into the cytoplasm. On the basis of the present experimental results we conclude that the gradual changes in the overall fluorescence intensity observed for a cell suspension are due to the distribution of different lag times shown by different cells as to the calcium influx through membrane calcium channels.  相似文献   
10.
We have established BCL1 CL-3 cells capable of responding to B15-TRF and interleukin 2 (IL 2). This clone has both high affinity and low affinity receptors for IL 2 (IL 2R), but IL 2 by itself did not stimulate either proliferation or immunoglobulin (Ig) secretion. B15-TRF, which possesses both growth and differentiation activity, causes an increase in size of CL-3 cells and renders CL-3 cells responsive to IL 2, including an increased expression of IL 2R (eight-fold to 10-fold) and the differentiation of CL-3 cells into Ig secretion (60 to 80% of cultured cells). CL-3 cells pretreated with B15-TRF for 12 hr become competent to respond to IL 2 by up-regulation of IL 2R within 12 hr. In contrast CL-3 cells pretreated with IL 2 for 12 hr required 24 hr B15-TRF stimulation to result in IL 2R up-regulation. Thus the ordered action of B15-TRF and IL 2 is the most effective operational pathway for the up-regulation of IL 2R. This IL 2-mediated IL 2R up-regulation and induction of Ig synthesis depends upon the concentration of IL 2 in the culture. Both responses seem to be caused by IL 2 molecules bound to high affinity IL 2R. However, the possibility of involvement of low affinity IL 2R can not be vigorously excluded. In fact the level of IL 2 required for a response is far higher than that needed for activated T cell proliferation. This cloned BCL1 subline promises to be a useful tool for studying the regulation and mechanisms of B cell responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号