首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2225篇
  免费   142篇
  2367篇
  2023年   13篇
  2022年   30篇
  2021年   61篇
  2020年   33篇
  2019年   31篇
  2018年   58篇
  2017年   37篇
  2016年   90篇
  2015年   102篇
  2014年   119篇
  2013年   196篇
  2012年   190篇
  2011年   173篇
  2010年   109篇
  2009年   94篇
  2008年   136篇
  2007年   120篇
  2006年   107篇
  2005年   106篇
  2004年   100篇
  2003年   84篇
  2002年   65篇
  2001年   19篇
  2000年   23篇
  1999年   20篇
  1998年   13篇
  1997年   18篇
  1996年   16篇
  1995年   16篇
  1994年   19篇
  1993年   7篇
  1992年   8篇
  1991年   12篇
  1990年   12篇
  1989年   7篇
  1988年   16篇
  1987年   5篇
  1986年   7篇
  1985年   13篇
  1984年   10篇
  1983年   8篇
  1982年   6篇
  1981年   5篇
  1980年   6篇
  1979年   8篇
  1977年   3篇
  1975年   4篇
  1973年   7篇
  1972年   3篇
  1967年   3篇
排序方式: 共有2367条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The effects of allyl, sulfur and cyanogenic compounds on thegermination of upper cocklebur (Xanthium pennsylvanicum Wallr.)seeds were examined. Mercaptoethanol and methylmercaptan aswell as KCN, substrates for rßcyanoalanine synthase(CAS), and H2S and thiocyanate, the products of the CAS catalyzingreaction, were effective in promoting germination, suggestingthe involvement of CAS in germination. Most of allyl compounds, especially allylthiourea, as well asethylene which activated CAS [Hasegawa et al. (1994) Physiol.Plant. 91: 141], promoted the germination in an abnormal typewhich occurred by the predominant growth of cotyledons as didC2H4 [Katoh and Esashi (1975) Plant Cell Physiol. 16: 687].However, they failed to activate CAS unlike ethylene, and toliberate free ethylene during an incubation period. It was thuspossible that an C2H4-like double bond within allyl compoundscan act to promote seed germination. (Received June 10, 1996; Accepted August 21, 1996)  相似文献   
7.
Abstract: The effects of α-sialosylcholesterol (α-SC) on formation of either microfilament or glia filament of rat astrocytes were investigated using a reconstitution system. Polymerization of the depolymerized microfilament preparation that had been extracted from a crude cytoskeletal fraction of rat astrocytes, in the presence of 100 m M KCI and 10 m M MgCI2, was suppressed in a dose-dependent manner by α-SC. α-SC inhibited polymerization of G-actin in a similar manner. The intensity of a-SC inhibition of G- actin polymerization was as great as that of microfilament polymerization, suggesting that the inhibition of microfilament polymerization by α-SC was due to the direct action of α-SC on actin, the main component of microfilament. α-SC depolymerized partly the polymerized microfilament preparation, which resembled F-actin (microfilament-like filaments). α-SC suppressed, in a dose-dependent manner, polymerization of a glia filament preparation that had been extracted from astrocyte cytoskeletons in the presence of phalloidin. An increase in the amount of added α-SC (up to 15 n M ) decreased the amount of the larger glia filament-like filaments, which were 10 nm thick and centrifuged down at 16,000 g for 30 min, and increased that of smaller ones precipitated only after centrifugation at 100,000 g for 1 h. The lower the concentration of the depolymerized glia filament extract, the greater was the inhibition by α-SC of the polymerization. α-SC repressed polymerization of vimentin, the dominant component of glia filament. Vimentin polymerization was more strongly inhibited by α-SC than polymerization of glia filament was. The findings suggested that α-SC suppressed polymerization of glia filament through a direct action on vimentin and that the glia filament-associated proteins increased its structural stability in the presence of α-SC.  相似文献   
8.
Evolution of HCN from both rice ( Oryza sativa ) and cocklebur ( Xanthium pennsylvanicum ) seeds increased during a pre-germination period and preceded the evolution of (C2H4). These two species were adopted as the representatives of starchy and fatty seeds, respectively. Ethylene promotes seed germination of many species. However, HCN evolution declined abruptly when the radicles emerged and before the peak in C2H4 evolution. More-over, both rice and soybean ( Glycine max ) seeds showed some activity of β-cyanoalanine synthase (CAS, EC 4.4.1.9) even in the unimbibed dry state. The activities of CAS in the lower seed of cocklebur and in soybean seeds increased rapidly after emergence of the radicle. However, the CAS of rice seeds, with high activity in the dry state, exhibited a bimodal change, gradually decreasing until radicle emergence had occurred, but then increaing. It is thus likly that HCN evolution during initial imbibition may be derived from cyanogenic reserves and controlled by both pre-existing and subsequently-developing CAS. The exogenous application of C2H4 stimulated the activities of CAS in both rice and upper cocklebur seeds and reduced their cyanogen contents. Therefore, the decline of HCN evolution after germination seems to be due to the increased activities of CAS by endogenously produced C2H4.  相似文献   
9.
In many seed species, the major source of HCN evolved during water imbibition is cyanogenic glycosides. The present investigation was performed to elucidate the role of endogenous cyanogenic glycosides in the control of seed germination and to examine the involvment of β-glucosidase in this process. All seed species used here contained some activities of β-glucosidase already in the dry state before imbibition. in the decreasing order of Malus pumila, Daucus carota, Hordeum vulgare, Chenopodium album and so on. β-Gluosidase activity in upper and lower seeds of cocklebur (Xanthium pennsylvanicum Wallr.) decreased with imbibition, and in lower seeds the activity disappeared when they germinated. On the contrary, in caryopses of rice (Oryza sativa L. cv. Sasanishiki) β-glucosidase increased during imbibition, and this increase continued even after germination. β-Glucosidase in cocklebur seeds was more active in the axial than in the cotyledonary tissue. Amygdalin, prunasin and linamarin could all serve as substrattes for the β-glucosidase(s) from both cocklebur and rice. Amygdalin, prunasin and linamarin as well as KCN, were effective in stimulating the germination of upper cocklebur seeds. The seeds evolved much more free HCN gas when they were exposed to the cyanogenic glycosides than when the glycosides were absent. Moreover, the application of the cyanogenic glycosides or of KCN caused accumulation of bound HCN in the seeds. Carbon monoxide, which stimulated cocklebur seed germination only slightly, did not cause accumulation of bound HCN. We suggest that a balance between the cytochrome and the alternative respiration pathways, which is adequate for germination (Esashi et al. 1987. Plant Cell Physiol. 28: 141–150), may be brought about by the action of endogenous HCN; a large portion of which is liberated from cyanogenic glycosides via the action of β-glucosidase. In addition to the partial suppression of the cytochrome path and unlike carbon monoxide, the HCN thus produced may act to supply cyanide group(s) to unknown compounds necessary for germination.  相似文献   
10.
A possible involvement of ß-cyanoalanine synthase(CAS: EC 4.4.1.9 [EC] ) in germination processes of seeds was demonstratedusing pre-soaked upper seeds of cocklebur (Xanthium pennsylvanicumWallr.). Pretreatment in anoxia not only with KCN but also cysteine,as the substrates for CAS, stimulated the subsequent germinationof cocklebur seeds in air. However, the effect of cysteine wasmanifested even in air when applied together with C2H4, andits effect was further enhanced in combination with KCN. Thegermination-stimulating effect of KCN was intensified by C2H4only when 02 was present. In contrast, serine, another substrateof CAS, was effective in air only when combined with C2H4 and/orKCN. The addition of cysteine greatly reduced the cyanogenicglycoside content of seeds, but increased HCN evolution. Onthe other hand, glutathione did not have any effect on cockleburseed germination, HCN evolution or bound cyanogen content, suggestingthat cysteine is not acting as a reducing reagent. It is suggestedthat CAS regulates the process of cocklebur seed germinationby the dual action of enlarging the pool of amino acids andsupplying sulphydryl bases, the latter being more determinatelyimportant. Serine is effective only via the former action, whilecysteine would act via both. Key words: Cyanide, cyanogenic glycoside, ß-cyanoalanine synthase, seed germination, Xanthium pennsylvanicum  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号