首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   19篇
  2024年   1篇
  2023年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   12篇
  2010年   6篇
  2009年   8篇
  2008年   8篇
  2007年   8篇
  2006年   3篇
  2005年   6篇
  2004年   10篇
  2003年   3篇
  2002年   5篇
  2001年   8篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1942年   1篇
  1941年   1篇
排序方式: 共有169条查询结果,搜索用时 46 毫秒
1.
The succinate dehydrogenase consists of only four subunits, all nuclearly encoded, and is part of both the respiratory chain and the Krebs cycle. Mutations in the four genes encoding the subunits of the mitochondrial respiratory chain succinate dehydrogenase have been recently reported in human and shown to be associated with a wide spectrum of clinical presentations. Although a comparatively rare deficiency in human, molecularly defined succinate dehydrogenase deficiency has already been found to cause encephalomyopathy in childhood, optic atrophy or tumor in adulthood. Because none of the typical housekeeping genes encoding this respiratory chain complex is known to present tissue-specific isoforms, the tissue-specific involvement represents a quite intriguing question, which is mostly addressed in this review. A differential impairment of electron flow through the respiratory chain, handling of oxygen, and/or metabolic blockade possibly associated with defects in the different subunits that can be advocated to account for tissue-specific involvement is discussed.  相似文献   
2.
Elucidation of the pathogenesis in respiratory chain diseases is of great importance for developing specific treatments. The limitations inherent to the use of patient material make studies of human tissues often difficult and the mouse has therefore emerged as a suitable model organism for studies of respiratory chain diseases. In this review, we present an overview of the field and discuss in depth a few examples of animal models reproducing pathology of human disease with primary and secondary respiratory chain involvement.  相似文献   
3.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) purified from leaves of the crassulacean acid metabolism plant (Crassula argentea) was chemically modified by the specific arginyl reagent 2,3-butanedione. Modification resulted in enzyme inactivation which followed pseudo first-order kinetics. Participation of arginyl residues involved in the binding of or response to both phosphoenolpyruvate and malate, respectively, was established. Inactivation and protection studies suggest the presence of three sites involved in the binding of the substrate, phosphoenolpyruvate, the activator, glucose 6-phosphate, and the inhibitor, malate. Studies using both fluorescence measurements of binding and steady-state kinetic methods indicate that phosphoenolpyruvate can bind both to the active site and to the activator site. Evidence for stimulation of the activity of phosphoenolpyruvate carboxylase upon the binding of substrate to the activation site was provided by kinetic studies using AMP, previously shown to be a specific ligand for the activation site.  相似文献   
4.
5.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
6.
Dupont J  Rustin P  Lance C 《Plant physiology》1982,69(6):1308-1314
O2 uptake by tissue extracts in the presence of linoleic acid is generally ascribed to lipoxygenase. Such an O2 uptake can be observed not only with mitochondria of Solanum tuberosum L. and Arum maculatum L. and pure lipoxygenase but also with cytochrome c. However, the rate of oxidation is highly dependent on the procedure used to prepare the solutions of linoleic acid. Unless special care is taken to prevent contact between linoleic acid and O2, it appears that linoleic acid hydroperoxide is readily formed. This derivative can be readily oxidized by mitochondria or cytochrome c. On the other hand, the use of a rapid and specific enzymic procedure to estimate the disappearance of linoleic acid demonstrates that linoleic acid itself is not consumed at any appreciable rate by mitochondria or cytochrome c, the true substrate being linoleic acid hydroperoxide. During the reaction, the heme nucleus of added cytochrome c or of mitochondrial cytochromes undergoes deep alterations. Therefore, caution should be exerted when equating an O2 uptake observed in the presence of linoleic acid to a lipoxygenase activity. The same holds true for the similarity of reaction towards specific inhibitors between lipoxygenase and the cyanide-insensitive pathway oxidase.  相似文献   
7.
Summary Using electron microscope cytochemistry and cells separated on Ficoll-Hypaque, Mg2+-dependent ATPase, ADPase and 5-nucleotidase were predominantly localized as ectoenzymes on normal human granulocytes. Large deposits of ATPase final reaction product and more finely granular deposits of 5-nucleotidase final reaction product were firmly attached to the outer surface of cell plasma membranes. The final reaction product from ecto-ADPase was, however, only loosely associated with the plasma membrane. In addition, finer deposits of ADPase final reaction product were seen in specific granules and in background cytoplasm. No nucleotidase phosphatase activity was localized to the alkaline phosphatase-containing granules (phosphasomes) recently described by Rustinet al.In granulocytes from patients with chronic granulocytic leukaemia, ecto-ATPase had a patchy distribution on the plasma membranes. There was considerable heterogeneity between cells with regard to ADPase and 5-nucleotidase localization. In some cells, ADPase was seen only as an ectoenzyme and in a few it was present in specific granules, but in others it was seen at both sites, while in some cells no activity was detected. 5-Nucleotidase localization was normal in some cells but lacking from many. No correlation was found between enzyme heterogeneity and the degree of morphological cell maturity.  相似文献   
8.
9.
The oxidative stress possibly resulting from an inherited respiratory chain (RC) deficiency was investigated in a series of human cultured skin fibroblasts presenting either ubiquinone depletion or isolated defect of the various RC complexes. Taken as an index for superoxide overproduction, a significant induction of superoxide dismutase activity was observed in complex V-deficient fibroblasts harboring the NARP-mutation in the ATPase 6 gene. Superoxide dismutase induction was also noticed, albeit to a lesser extent, in complex II-deficient fibroblasts with a mutation in the nuclear gene encoding the flavoprotein subunit of the succinate dehydrogenase. No sign of oxidative stress could be found in ubiquinone-depleted fibroblasts. In all cases but complex IV-defect, increased oxidative stress was associated with increased cell death. In glucose-rich medium, apoptosis appeared as the main cell death process associated with all types of RC defect. However, similar to the great variations in oxidative stress associated with the various types of RC defect, we found that apoptotic features differed noticeably between defects. No indication of increased cell death was found in ubiquinone-depleted fibroblasts.  相似文献   
10.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号