首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2009年   2篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Colonial corals occur in a wide range of marine benthic habitats from the shallows to the deep ocean, often defining the structure of their local community. The black coral Leiopathes glaberrima is a long-lived foundation species occurring on carbonate outcrops in the Northern Gulf of Mexico (GoM). Multiple color morphs of L. glaberrima grow sympatrically in the region. Morphological, mitochondrial and nuclear ribosomal markers supported the hypothesis that color morphs constituted a single biological species and that colonies, regardless of color, were somewhat genetically differentiated east and west of the Mississippi Canyon. Ten microsatellite loci were used to determine finer-scale population genetic structure and reproductive characteristics. Gene flow was disrupted between and within two nearby (distance = 36.4 km) hardground sites and two sympatric microsatellite lineages, which might constitute cryptic species, were recovered. Lineage one was outbred and found in all sampled locations (N = 5) across 765.6 km in the Northern Gulf of Mexico. Lineage two was inbred, reproducing predominantly by fragmentation, and restricted to sites around Viosca Knoll. In these sites the lineages and the color phenotypes occurred in different microhabitats, and models of maximum entropy suggested that depth and slope influence the distribution of the color phenotypes within the Vioska Knolls. We conclude that L. glaberrima is phenotypically plastic with a mixed reproductive strategy in the Northern GoM. Such strategy might enable this long-lived species to balance local recruitment with occasional long-distance dispersal to colonize new sites in an environment where habitat is limited.  相似文献   
2.

Although the hydrocoral Millepora alcicornis is a prominent and ecologically relevant amphi-Atlantic reef builder, little attention has been given to its endosymbionts which are also involved in the survival and adaptation success of the species in different environments. In this study, we resolve the genetic relationships between M. alcicornis and its symbionts (Symbiodiniaceae) within both sides and across the Atlantic. The COI and 16S-rDNA regions were selected for the host tissues, and the 23S-rDNA and ITS regions were chosen for the symbionts. Phylogenetic networks consistently showed that host populations from the eastern Atlantic archipelagos (Canary and Cape Verde Islands) were more related to western Atlantic populations than they were between them. However, results for Symbiodiniaceae species varied according to the molecular marker used. Samples from Mexico were grouped as Symbiodinium sp. (formerly Symbiodinium clade A) by both markers. Specimens from Puerto Rico were grouped as either Symbiodinium sp. or Breviolum sp. (formerly Symbiodinium clade B), according to the molecular marker used. Most samples from the eastern Atlantic were identified as Breviolum sp. by both markers, except for one sample from the Canary Islands and two samples from the Cape Verde Islands, which were identified as Cladocopium sp. (formerly Symbiodinium clade C) using ITS-rDNA. These results suggest that these two genera of Symbiodiniaceae may cohabit the same M. alcicornis colony. Because hydrocorals from the Canary Islands were phylogenetically related to the western Atlantic, but symbionts were more related to those of the Cape Verde Islands, the origin of the coral and its symbionts is probably different. This may be explained either by “horizontal” transmission, i.e. acquisition from the environment, or by a change in the dominant symbiont composition within the host. The flexibility of this hydrocoral to select symbionts, depending on environmental conditions, can provide new insight to understand how this coral may face ongoing climate change.

  相似文献   
3.

Background

Microsatellite loci have high mutation rates and thus are indicative of mutational processes within the genome. By concentrating on the symbiotic and aposymbiotic cnidarians, we investigated if microsatellite abundances follow a phylogenetic or ecological pattern. Individuals from eight species were shotgun sequenced using 454 GS-FLX Titanium technology. Sequences from the three available cnidarian genomes (Nematostella vectensis, Hydra magnipapillata and Acropora digitifera) were added to the analysis for a total of eleven species representing two classes, three subclasses and eight orders within the phylum Cnidaria.

Results

Trinucleotide and tetranucleotide repeats were the most abundant motifs, followed by hexa- and dinucleotides. Pentanucleotides were the least abundant motif in the data set. Hierarchical clustering and log likelihood ratio tests revealed a weak relationship between phylogeny and microsatellite content. Further, comparisons between cnidaria harboring intracellular dinoflagellates and those that do not, show microsatellite coverage is higher in the latter group.

Conclusions

Our results support previous studies that found tri- and tetranucleotides to be the most abundant motifs in invertebrates. Differences in microsatellite coverage and composition between symbiotic and non-symbiotic cnidaria suggest the presence/absence of dinoflagellates might place restrictions on the host genome.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-939) contains supplementary material, which is available to authorized users.  相似文献   
4.
Epidemiological evidence has associated exposure to arsenic (As) in drinking water with an increased incidence of human cancers in the skin, bladder, liver, kidney and lung. Sodium arsenite mimics the effects of estradiol and induces cell proliferation in the estrogen responsive breast cancer cell line MCF-7. Therefore, our aim was to further explore the ability of sodium arsenite to induce MCF-7 epithelial breast cell proliferation and some of its underlying mechanisms by studying ROS production, c-Myc and HO-1 protein levels, 8-OHdG formation and NF-kappaB activation. Low arsenite concentrations (0.5-5 microM) induced ROS production and ROS-related depolarization of the mitochondrial membrane suggesting that mitochondria played an important role in the oxidative effects of As. ROS-mediated DNA damage as measured by the presence of 8-OHdG DNA-adducts in their nuclei, IkappaB phosphorylation, NF-kappaB activation and increases in c-Myc and HO-1 protein levels were also observed, suggesting that these factors play a relevant role in the arsenite induced MCF-7 cell recruitment into the S-phase of the cell cycle and cell proliferation observed. In conclusion, arsenite activates several pathways involved in MCF-7 cell proliferation suggesting that arsenite exposure may pose a risk for breast cancer in human exposed populations notwithstanding that most studies to date have not yet implicated this metalloid as a cofactor in the etiology of this disease.  相似文献   
5.
Arsenic (As) is an ubiquitous element in the environment for which the main route of human exposure is through consumption of drinking water. Reactive oxygen species generation (ROS) associated with As exposure is known to play a fundamental role in the induction of adverse health effects and disease (cancer, diabetes, hypertension, and cardiovascular and neurological diseases). However, the precise mechanisms of oxidative stress and damage from As exposure are not fully understood and moreover the use of non-invasive methods of measuring ROS generation and oxidative damage footprints in humans is no easy task. Although As induces adverse health effects not all exposed individuals develop degenerative chronic diseases or even manifest adverse effects or symptoms, suggesting that genetic susceptibility is an important factor involved in the human response to As exposure. This mini-review summarizes the literature describing the molecular mechanisms affected by As, as well as the most used biomarkers of oxidative stress and damage in human populations. The most reported biomarkers of oxidative DNA damage are the urinary excretion of 8-OHdG and the comet assay in lymphocytes, and more recently DNA repair mechanism markers from the base and nuclear excision repair pathways (BER and NER). Genetic heterogeneity in the oxidative stress pathways involved in As metabolism are important causative factors of disease. Thus further refinement of human exposure assessment is needed to reinforce study design to evaluate exposure-response relationships and study gene-environment interactions. The use of microarray-based gene expression analysis can provide better insights of the underlying mechanisms involved in As-induced diseases and could help to identify target genes that can be modulated to prevent disease.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号