首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   18篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2019年   2篇
  2016年   3篇
  2015年   7篇
  2014年   3篇
  2013年   5篇
  2012年   10篇
  2011年   12篇
  2010年   9篇
  2009年   2篇
  2008年   10篇
  2007年   11篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1977年   3篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
1.
Huntington and Parkinson diseases (HD and PD) are two major neurodegenerative disorders pathologically characterized by the accumulation of the aggregate-prone proteins mutant huntingtin (in HD) and α-synuclein (in PD). Mutant huntingtin is an autophagy substrate and autophagy modulators affect HD pathology both in vitro and in vivo. In vitro, α-synuclein levels are able to modulate autophagy: α-synuclein overexpression inhibits autophagy, whereas downregulation promotes autophagy. Here, we review our recent studies showing that α-synuclein levels modulate mutant huntingtin toxicity in mouse models. This phenotypic modification is accompanied by the in vivo modulation of autophagosome numbers in mouse brains from both control and HD mice expressing different levels of α-synuclein.  相似文献   
2.
Autophagy is an evolutionarily conserved mechanism for protein degradation that is critical for the maintenance of homeostasis in man. Autophagy has unexpected pleiotropic functions that favor survival of the cell, including nutrient supply under starvation, cleaning of the cellular interior, defense against infection and antigen presentation. Moreover, defective autophagy is associated with a diverse range of disease states, including neurodegeneration, cancer and Crohn's disease. Here we discuss the roles of mammalian autophagy in health and disease and highlight recent advances in pharmacological manipulation of autophagic pathways as a therapeutic strategy for a variety of pathological conditions.  相似文献   
3.
Small biopsy samples are used increasingly to assess the biomarker expression for prognostic information and for monitoring therapeutic responses prior to and during neoadjuvant therapy. The issue of intratumor heterogeneity of expression of biomarkers, however, has raised questions about the validity of the assessment of biomarker expression based on limited tissue samples. We examined immunohistochemically the expression of HER-2neu (p185erbB-2), epidermal growth factor receptor (EGFR), Bcl-2, p53, and proliferating cell nuclear antigen (PCNA) in 30 breast carcinomas using archived, paraffin embedded tissue and determined the extent of intratumor heterogeneity. Each section was divided into four randomly oriented discrete regions, each containing a portion of the infiltrating carcinoma. For each tumor, the entire lesion and four regions were analyzed for the expression of these markers. Scores of both membrane and cytoplasmic staining of HER-2neu and EGFR, scores of cytoplasmic staining of Bcl-2, and scores of nuclear staining of both p53 and PCNA were recorded. The intensity of staining and the proportion of immunostained cells were determined. A semiquantitative immunoscore was calculated by determining the sum of the products of the intensity and corresponding proportion of stained tumor cells. We analyzed both invasive (IDC) and in situ (DCIS) carcinomas. The Wilcoxon signed-rank test was used for paired comparisons between overall and regional immunoscores and between overall and regional percentages of stained cells. Spearman's correlation coefficients were used to assess the level of agreement of overall biomarker expression with each of the regions. Generalized linear models were used to assess overall and pair-wise differences in the absolute values of percent changes between overall and regional expression of biomarkers. For IDCs, there were no statistically significant differences in the expression of the biomarkers in terms of either the percentage of cells staining or the immunoscores when comparing the entire tumor with each region except for the lower EGFR expression of arbitrarily selected region 1 and lower p53 expression of region 1 compared to that of the entire tumor section. For DCIS, there were no statistically significant differences in the expression of the biomarkers between the entire tumor and each region except in PCNA of region 2 compared to that of entire tumor section. Positive correlation of immunoscores was observed between the entire tumor and each region as well as across all four regions for IDC. Similar observations were noted with DCIS except for HER-2neu and PCNA. No statistically significant differences were observed in the absolute values of percent changes of biomarker expression between overall and the four regions for both DCIS and IDC. Therefore, no significant intratumor heterogeneity in the expression of HER-2neu, Bcl-2, and PCNA was observed in IDC. Minor regional variations were observed for EGFR and p53 in IDC. Similarly, no significant regional variation in the expression of markers was observed in DCIS except for PCNA.  相似文献   
4.
5.
We have identified a missense mutation in the motor domain of the neuronal kinesin heavy chain gene KIF5A, in a family with hereditary spastic paraplegia. The mutation occurs in the family in which the SPG10 locus was originally identified, at an invariant asparagine residue that, when mutated in orthologous kinesin heavy chain motor proteins, prevents stimulation of the motor ATPase by microtubule-binding. Mutation of kinesin orthologues in various species leads to phenotypes resembling hereditary spastic paraplegia. The conventional kinesin motor powers intracellular movement of membranous organelles and other macromolecular cargo from the neuronal cell body to the distal tip of the axon. This finding suggests that the underlying pathology of SPG10 and possibly of other forms of hereditary spastic paraplegia may involve perturbation of neuronal anterograde (or retrograde) axoplasmic flow, leading to axonal degeneration, especially in the longest axons of the central nervous system.  相似文献   
6.
7.
8.
Clinal patterns of autosomal genetic diversity within Europe have been interpreted in previous studies in terms of a Neolithic demic diffusion model for the spread of agriculture; in contrast, studies using mtDNA have traced many founding lineages to the Paleolithic and have not shown strongly clinal variation. We have used 11 human Y-chromosomal biallelic polymorphisms, defining 10 haplogroups, to analyze a sample of 3,616 Y chromosomes belonging to 47 European and circum-European populations. Patterns of geographic differentiation are highly nonrandom, and, when they are assessed using spatial autocorrelation analysis, they show significant clines for five of six haplogroups analyzed. Clines for two haplogroups, representing 45% of the chromosomes, are continentwide and consistent with the demic diffusion hypothesis. Clines for three other haplogroups each have different foci and are more regionally restricted and are likely to reflect distinct population movements, including one from north of the Black Sea. Principal-components analysis suggests that populations are related primarily on the basis of geography, rather than on the basis of linguistic affinity. This is confirmed in Mantel tests, which show a strong and highly significant partial correlation between genetics and geography but a low, nonsignificant partial correlation between genetics and language. Genetic-barrier analysis also indicates the primacy of geography in the shaping of patterns of variation. These patterns retain a strong signal of expansion from the Near East but also suggest that the demographic history of Europe has been complex and influenced by other major population movements, as well as by linguistic and geographic heterogeneities and the effects of drift.  相似文献   
9.
The membrane origin of autophagosomes has long been a mystery and it may involve multiple sources. In this punctum, we discuss our recent finding that the plasma membrane contributes to the formation of pre-autophagic structures via clathrin-mediated endocytosis. Our study suggests that Atg16L1 interacts with clathrin heavy-chain/AP2 and is also localized on vesicles (positive for clathrin or cholera toxin B) close to the plasma membrane. Live-cell imaging studies revealed that the plasma membrane contributes to Atg16L1-positive structures and that this process and autophagosome formation are impaired by knockdowns of genes regulating clathrin-mediated endocytosis.Key words: autophagy, plasma membrane, endocytosis, phagophore, originWhere do autophagosomes get their membrane from? Although the field of autophagy has grown tremendously since its discovery a few decades ago, the origin(s) of the membranes that contribute to autophagosome biogenesis has been a mystery among autophagy researchers until recently. Mammalian autophagosomes are formed randomly throughout the cytoplasm via a process that involves elongation and fusion of phagophores to form double-membraned autophagosomes. This process involves two ubiquitin-like conjugation systems: conjugation of Atg12 to Atg5 that later forms a macromolecular complex with Atg16L1, and conjugation of phosphatidylethanolamine (PE) with Atg8/LC3-I. The Atg12-Atg5-Atg16L1 complex is targeted to the preautophagic structures, which then acquire Atg8. Atg12-Atg5-Atg16L1 dissociates from completed autophagosomes, while LC3-PE (LC3-II) is associated both with pre-autophagic structures and completed autophagosomes.Some recent studies have explored the contribution of membranes from different organelles supporting the general idea that autophagosomes derive membranes from pre-existing organelles. It is quite possible that there may be multiple membrane sources involved. A few groups have revisited the hypothesis that the endoplasmic reticulum (ER) may be one of the membrane donors. High-resolution 2D electron microscopy (EM) and 3D EM-tomography studies have revealed connections between the ER and the growing autophagosomes. Whether the ER contributes to general autophagy or a specific form of autophagy, reticulophagy, remains to be determined. In addition, it has not been shown if ER membrane is required for autophagosome formation. Recently another study has reported that autophagosomes receive lipids from the outer mitochondrial membrane, but only under starvation conditions, again fueling the multiple-membrane source hypothesis.We have now found evidence for plasma membrane contribution to pre-autophagic structures via endocytosis. Unlike the previous studies, which have focused on LC3- positive structures, we looked specifically at the Atg5-, Atg12- and Atg16-positive pre-autophagic structures, an idea that stemmed from our finding that clathrin heavy-chain immunoprecipitates with Atg16L1. We think that this interaction is partly mediated by the adaptor protein AP2, since knockdown of AP2 decreases the clathrin heavy-chain-Atg16L1 interaction. Immunogold EM also shows clathrin localization on Atg16L1-labeled vesicles close to the plasma membrane.These findings led us to test whether knockdown of proteins involved in clathrin-mediated endocytosis affected Atg16L1-positive pre-autophagic structures. Indeed, knockdown of key proteins in the clathrin-mediated endocytic pathway results in a decrease in the formation of Atg16L1-positive structures both under basal or autophagy-induced conditions (starvation or trehalose treatment). This correlates with a decrease in the number of LC3-labeled autophagosomes. When we directly analyzed vesicle fusion by livecell microscopy, we observed that vesicles endocytosed from the plasma membrane fuse to the Atg16L1-positive vesicles close to the plasma membrane. This was confirmed by immuno-EM when we found cholera toxin B-labeling (used to label plasma membrane that is subsequently internalized by endocytosis) on Atg16L1-vesicles. We noticed that overexpression of an Atg16L1 mutant that does not bind clathrin heavy-chain does not form Atg16L1-vesicular structures in the way we see with wild-type Atg16L1, suggesting that the binding of Atg16L1 to AP2/clathrin is required for the subsequent formation of the Atg16L1 vesicles.When we blocked endocytic vesicle scission (using both genetic and chemical inhibitors) we found that Atg16L1 strongly immunoprecipitates with clathrin-heavy chain probably due to the accumulation of clathrin-Atg16L1 structures at the plasma membrane that failed to pinch off. This was strongly supported by our fluorescence microscopy and immuno-EM studies that showed what we predicted—accumulation of Atg16L1 at the plasma membrane. This suggests that Atg16L1 in a complex with AP2/clathrin is targeted to the plasma membrane and subsequently internalized as Atg16L1-positive structures. Thus, our data strongly suggest that plasma membrane contributes to early autophagic precursors that subsequently mature to form phagophores (Fig. 1).Open in a separate windowFigure 1Plasma membrane contributes to the formation of early autophagic precursors. Previous studies show that delivery of fully formed autophagosomes to lysosomes requires fusion of such autophagosomes with early or late endosomes to form amphisomes, which are Atg16L1-negative, LC3-positive and are also positive for endosomal markers. We show that blocking clathrin-mediated endocytosis inhibits formation of Atg16L1-positive structures that mature to form phagophores and later autophagosomes. These Atg16L1-vesicles are positive for other early autophagosomal markers like Atg5 and Atg12, but are negative for early endosomal markers like EEA1, suggesting that they are high up in the autophagosome biogenesis cascade. Inhibition of dynamin with Dynsasore or the use of a dominant negative K44A mutant blocks scission and results in Atg16L1 accumulation on the plasma membrane, suggesting that endosomal scission is critical for this process.Although previous studies suggest that completely formed autophagosomes need to fuse with early or late endosomes in order for subsequent autophagosomelysosome fusion to occur, they did not look at the formation of pre-autophagic structures. Our study shows that active endocytosis is required both for the formation of autophagosomes, when very early endocytic intermediates immediately pinching off the plasma membrane (not early endosomes) fuse with Atg16L1-positive structures to form phagophores, and also for maturation of autophagosomes when early or late endosomes fuse with Atg16L1-negative but LC3-positive autophagosomes to form amphisomes. Since blocking clathrin-mediated endocytosis does not completely abrogate autophagosome formation, we believe that other endocytic pathways may have a similar role. Depending on the cell type or the physiological conditions, the contributions from the different endocytic pathways may vary accordingly. It will be interesting to know if the endocytic pathway continuously delivers membrane for early steps in autophagy as the preautophagic structures grow and mature to form autophagosomes, deriving membrane from other sources.  相似文献   
10.
Lafora disease (LD) is a progressive, lethal, autosomal recessive, neurodegenerative disorder that manifests with myoclonus epilepsy. LD is characterized by the presence of intracellular inclusion bodies called Lafora bodies (LB), in brain, spinal cord and other tissues. More than 50 percent of LD is caused by mutations in EPM2A that encodes laforin. Here we review our recent findings that revealed that laforin regulates autophagy. We consider how autophagy compromise may predispose to LB formation and neurodegeneration in LD, and discuss future investigations suggested by our data.Key words: autophagy, glycogen metabolism, Lafora disease, laforin, malin, neurodegeneration  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号