首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2005年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Thermomyces lanuginosus was subjected to three cycles of mutagenesis (UV/NTG) and a selection procedure to develop amylase-hyperproducing, catabolite-repression-resistant and partially constitutive strains. One of the selected derepressed mutant strain III51, produced ∼7- and 3-fold higher specific activity of α-amylase (190 U/mg protein) and glucoamylase (105 U/mg protein), respectively, compared to a wild-type parental strain. Further, the effect of production parameters on mutant strain III51 was studied using a Box–Behnken design. The regression models computed showed significantly high R 2 values of 96 and 97% for α-amylase and glucoamylase activities, respectively, indicating that they are appropriate for predicting relationships between corn flour, soybean meal and pH with α-amylase and glucoamylase production. Journal of Industrial Microbiology & Biotechnology (2002) 29, 70–74 doi:10.1038/sj.jim.7000270 Received 05 July 2001/ Accepted in revised form 16 April 2002  相似文献   
2.
Morphological, developmental and antimetabolite-resistant mutants of T. lanuginosus were characterized and used for screening with the aim to develop constitutive alpha-amylase-hyperproducing strains. The protoplast fusion of two spontaneous mutants of T. lanuginosus, characterized as asporulating and resistant to 2-deoxy-D-glucose (2DG), resulted in sporulating, 2DG sensitive heterokaryotic fusants. A recombinant haploid strain F64fB developed there from produced alpha-amylase constitutively in glucose-containing medium. Constitutive alpha-amylase-hyperproducing mutant (III8) obtained after cyclic mutagenesis and screening yielded approximately 20 fold more alpha-amylase in a glycerol-containing medium than the wild strain.  相似文献   
3.
Hygromycin-resistant stable transformants of the thermophilic fungus, Thermomyces lanuginosus, were obtained by electroporation of germinating aleurospores with a plasmid pMP6, coding for hygromycin resistance. Southern hybridization analysis revealed that the gene is integrated into the chromosome. The hygromycin-resistant transformants were characterized for morphological changes, growth response towards the presence of antagonistic metabolites (hygromycin, 2-deoxy-D-glucose, cylcoheximide, benlate and acriflavine) on plates and enzyme production (amylases, pectinases and xylanase) in shake flask cultures. A hygromycin-resistant transformant hyg 33 was characterized as non-sporulating, 2-deoxy-D-glucose-resistant, acriflavine-sensitive and xylanase hypo-producer and is being used as parental strain for breeding strains through protoplast fusion.  相似文献   
4.
Amylase hyper-producing, catabolite-repression-resistant, recombinant strains were produced by intraspecific protoplast fusion of thermophilic fungus Thermomyces lanuginosus strains, using well-characterized, morphological, and 2-deoxy-D-glucose resistant markers. The fusant heterokaryons exhibited enhanced amylase activities as compared to the amylase hyper-producing parental strain (T2). Diploids derived from heterokaryons segregated to stable haploid recombinant strains. In the haploid strain (Tlh 4q), approximately 5-fold higher specific activities of alpha-amylase and glucoamylase in the culture filtrate were observed as compared to the wild-type strain (W0).  相似文献   
5.
Thermomyces lanuginosus strains from different culture collections, namely ATCC 26909, ATCC 22083, DEN 1457, IMI 84400 and BS1 were compared for xylanase production, and isozyme profile. Of all the strains of T. lanuginosus, BS1 a soil isolate produced the largest amount of xylanase. All strains were found to produce two forms of xylanase (I & II) with molecular mass corresponding to 25.0 and 54.0 KDa. The u.v/NTG mutagenesis of T. lanuginosus BS1 aleurospores/protoplasts resulted in xylanase-hyperproducing mutants. A morphological colour mutant RB 524 produced approximately 2.5-fold higher xylanase (2506.0 units/ml) as compared to the parent strain (1018.1 units/ml).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号