首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
Simple sequence length polymorphisms (SSLPs) are a widely used tool for genetic studies in humans and model animals. Experimental crosses among closely related strains that differ primarily in the trait that is to be mapped carry the advantage of avoiding co-segregation of potentially confounding traits. However, their realization is encumbered by the limited availability of newly arisen informative SSLPs among such strains. Here we report the establishment of a genome-wide SSLP panel for the spontaneously hypertensive rat (SHR) and its close relative, the stroke-prone SHR (SHRSP), consisting of a total of 273 polymorphic markers that were found among 2,734 rat SSLPs screened. In addition to limitations in numbers, we also found the distribution of informative markers to be heterogeneous, with clustering and paucity of informative markers, respectively, in particular regions. Notably, the majority of regions thus identified was also seen when we examined an unrelated set of strains from the literature, indicating, on a more generic level, the presence of mutagenically more and less stable genomic regions.  相似文献   
3.

Stroke is a leading cause of death and disability worldwide. Several mechanisms are involved in the pathogenesis of ischemic stroke (IS). The contributory role of the inflammatory and immunity processes was demonstrated both in vitro and in animal models, and was confirmed in humans. IS evokes an immediate inflammatory response that involves complex cellular and molecular mechanisms. All components of the innate and adaptive immunity systems are involved in several steps of the ischemic cascade. In the early phase, inflammatory and immune mechanisms contribute to the brain tissue damage, whereas, in the late phase, they participate to the tissue repair processes. In particular, damage-associated molecular patterns (DAMPs) appear critical for the promotion of altered blood brain barrier permeability, leukocytes infiltration, tissue edema and brain injury. Conversely, the activation of regulatory T lymphocytes (Tregs) plays protective effects. The identification of specific cellular/molecular elements belonging to the inflammatory and immune responses, contributing to the brain ischemic injury and tissue remodeling, offers the advantage to design adequate therapeutic strategies. In this article, we will present an overview of the knowledge on inflammatory and immunity processes in IS, with a particular focus on the role of DAMPs and leukocytes infiltration. We will discuss evidence obtained in preclinical models of IS and in humans. The main molecular mechanisms useful for the development of novel therapeutic approaches will be highlighted. The translation of experimental findings to the human disease is still a difficult step to pursue. Further investigations are required to fill up the existing gaps.

  相似文献   
4.
Prorenin can be converted to renin by limited proteolysis with trypsin. In the current study we compared conditions for activation of human renal and ovarian prorenin and cat renal prorenin with either liquid-phase trypsin or trypsin bound to sepharose (solid phase). Higher concentrations of trypsin were required to activate cat prorenin than human prorenin. Human prorenin was destroyed by high concentrations of trypsin, while cat prorenin was not destroyed by up to 2 mg/mL solid-phase trypsin. For both human and cat prorenin, addition of the competitive serine protease inhibitor benzamidine--HCl increased the concentration of trypsin needed to activate prorenin, resulting in slightly higher levels of human prorenin but lower levels of cat prorenin. For human samples, activation with solid-phase trypsin resulted in slightly higher estimates of prorenin than liquid-phase trypsin. These results demonstrate species differences in the susceptibility of prorenin to trypsin cleavage. Cat prorenin requires more trypsin to be activated and is less susceptible to destruction than human prorenin.  相似文献   
5.

Background

Abnormalities of vascular smooth muscle cells (VSMCs) contribute to development of vascular disease. Atrial natriuretic peptide (ANP) exerts important effects on VSMCs. A common ANP molecular variant (T2238C/αANP) has recently emerged as a novel vascular risk factor.

Objectives

We aimed at identifying effects of CC2238/αANP on viability, migration and motility in coronary artery SMCs, and the underlying signaling pathways.

Methods and Results

Cells were exposed to either TT2238/αANP or CC2238/αANP. At the end of treatment, cell viability, migration and motility were evaluated, along with changes in oxidative stress pathway (ROS levels, NADPH and eNOS expression), on Akt phosphorylation and miR21 expression levels. CC2238/αANP reduced cell vitality, increased apoptosis and necrosis, increased oxidative stress levels, suppressed miR21 expression along with consistent changes of its molecular targets (PDCD4, PTEN, Bcl2) and of phosphorylated Akt levels. As a result of increased oxidative stress, CC2238/αANP markedly stimulated cell migration and increased cell contraction. NPR-C gene silencing with specific siRNAs restored cell viability, miR21 expression, and reduced oxidative stress induced by CC2238/αANP. The cAMP/PKA/CREB pathway, driven by NPR-C activation, significantly contributed to both miR21 and phosphoAkt reduction upon CC2238/αANP. miR21 overexpression by mimic-hsa-miR21 rescued the cellular damage dependent on CC2238/αANP.

Conclusions

CC2238/αANP negatively modulates viability through NPR-C/cAMP/PKA/CREB/miR21 signaling pathway, and it augments oxidative stress leading to increased migratory and vasoconstrictor effects in coronary artery SMCs. These novel findings further support a damaging role of this common αANP variant on vessel wall and its potential contribution to acute coronary events.  相似文献   
6.
In recent studies performed in our laboratory we have shown that acute administration of (-)-linalool, the natural occurring enantiomer in essential oils, possesses anti-inflammatory, antihyperalgesic and antinociceptive effects in different animal models. The antihyperalgesic and antinociceptive effects of (-)-linalool have been ascribed to its capacity in stimulating the opioidergic, cholinergic and dopaminergic systems, as well as to its interaction with K+ channels, or to its local anaesthetic activity and/or to the negative modulation of glutamate transmission. Activation of A1 or A2A receptors has been shown to induce antinociceptive effects, and the possible involvement of adenosine in (-)-linalool antinociceptive effect, has not been elucidated yet. Therefore, in the present study, we have investigated the effects of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective adenosine A1 receptor antagonist and the effects of 3,7-dimethyl-1-propargilxanthine (DMPX), a selective adenosine A2A receptor antagonist on the antinociception of (-)-linalool in mice, measured in the hot-plate test. Both DPCPX (0.1 mg/kg; i.p.) and DMPX (0.1 mg/kg; i.p.) pre-treatment significantly depressed the antinociceptive effect of (-)-linalool at the highest doses tested. These findings demonstrated that the effect of (-)-linalool on pain responses is, at least partially, mediated by the activity of adenosine A1 and A2A receptors.  相似文献   
7.
8.
9.
1. The present work summarizes current knowledge on the genetic susceptibility to stroke, a complex cardiovascular phenotypic trait due to both gene/environment and gene/ gene interactions. 2. Evidence for the existence of genes directly contributing to stroke occurrence was first obtained in the animal model of the stroke-prone (sp) spontaneously hypertensive rat (SHR) through a linkage analysis approach in F2 segregating hybrid populations. In fact, several Quantitative Trait Loci (QTLs) were detected in different chromosomes of the rat. Candidate genes were identified (ANP, BNP, Adrenomedullin) and subsequently analyzed to obtain information on the fine disease mechanisms possibly dependent from specific sequence mutations. 3. The most important achievement was represented by the fact that the gene encoding ANP appeared to play a role in the disease of both rats and humans, thus providing a suggestive parallelism between the animal model and the human cerebrovascular disease. A more extensive analysis is required to identify the potential pathogenic role of genetic factors involved in human stroke.  相似文献   
10.
The mitochondrial uncoupling protein 2 (UCP2) plays a protective function in the vascular disease of both animal models and humans. UCP2 downregulation upon high-salt feeding favors vascular dysfunction in knock-out mice, and accelerates cerebrovascular and renal damage in the stroke-prone spontaneously hypertensive rat. Overexpression of UCP2 counteracts the negative effects of high-salt feeding in both animal models. We tested in vitro the ability of UCP2 to stimulate autophagy and mitophagy as a mechanism mediating its protective effects upon high-salt exposure in endothelial and renal tubular cells. UCP2 silencing reduced autophagy and mitophagy, whereas the opposite was true upon UCP2 overexpression. High-salt exposure increased level of reactive oxygen species (ROS), UCP2, autophagy and autophagic flux in both endothelial and renal tubular cells. In contrast, high-salt was unable to induce autophagy and autophagic flux in UCP2-silenced cells, concomitantly with excessive ROS accumulation. The addition of an autophagy inducer, Tat-Beclin 1, rescued the viability of UCP2-silenced cells even when exposed to high-salt. In summary, UCP2 mediated the interaction between high-salt-induced oxidative stress and autophagy to preserve viability of both endothelial and renal tubular cells. In the presence of excessive ROS accumulation (achieved upon UCP2 silencing and high-salt exposure of silenced cells) autophagy was turned off. In this condition, an exogenous autophagy inducer rescued the cellular damage induced by excess ROS level. Our data confirm the protective role of UCP2 toward high-salt-induced vascular and renal injury, and they underscore the role of autophagy/mitophagy as a mechanism counteracting the high-salt-induced oxidative stress damage.Subject terms: Macroautophagy, Macroautophagy  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号