首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
  2022年   1篇
  2014年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
2.
3.
Two low-molecular-weight proteins have been purified from Brassica napus pollen and a gene corresponding to one of them has been isolated. The gene encodes an 8.6-kD protein with two EF-hand calcium-binding motifs and is a member of a small gene family in B. napus. The protein is part of a family of pollen allergens recently identified in several evolutionarily distant dicot and monocot plants. Homologs have been detected in Arabidopsis, from which one gene has been cloned in this study, and in snapdragon (Antirrhinum majus), but not in tobacco (Nicotiana tabacum). Expression of the gene in B. napus was limited to male tissues and occurred during the pollen-maturation phase of anther development. Both the B. napus and Arabidopsis proteins interact with calcium, and the potential for a calcium-dependent conformational change was demonstrated. Given this affinity for calcium, the cloned genes were termed BPC1 and APC1 (B. napus and Arabidopsis pollen calcium-binding protein 1, respectively). Immunolocalization studies demonstrated that BPC1 is found in the cytosol of mature pollen. However, upon pollen hydration and germination, there is some apparent leakage of the protein to the pollen wall. BPC1 is also concentrated on or near the surface of the elongating pollen tube. The essential nature of calcium in pollen physiology, combined with the properties of BPC1 and its high evolutionary conservation suggests that this protein plays an important role in pollination by functioning as a calcium-sensitive signal molecule.  相似文献   
4.
Sinapoylcholine (sinapine) is the most abundant antinutritional phenolic compound in cruciferous seeds. The quaternary ammonium compounds, choline, betaine and N,N-dimethylglycine, reside along a biosynthetic pathway linked to the synthesis of membrane phospholipids and neurotransmitters with various biological functions. In chicken, choline intake is required for optimal egg-laying performance and a choline supplement in diet is positively correlated with weight gains. A key step in sinapine biosynthesis is catalyzed by sinapoylglucose: choline sinapoyltransferase (SCT; EC 2.3.1.91) to form an ester linkage with sinapoylglucose and choline. The objective of this work was to reduce the sinapine content and simultaneously enhance free choline levels in cruciferous seeds. We report here the characterization of an Arabidopsis T-DNA insertion mutant lacking SCT activity in the seed. The sct mutant seeds contain less than 1% of sinapine and a more than 2-fold increase in free choline compared with wild type. We further expressed a choline oxidase (COX; EC 1.1.3.17) gene from Arthrobacter pascens in the Arabidopsis sct mutant and wild-type background using a napin gene promoter to convert free choline into betaine, an effective stress-alleviating compound in plants. Betaine was not detected in WT or sct mutant seeds. The sct+COX seeds contain nearly 2-fold greater levels of betaine relative to WT+COX seeds, demonstrating a positive correlation between endogenous choline and betaine production. In contrast, stable comparable levels of free choline were detected between sct+COX and WT+COX plants suggesting choline homeostasis likely prevent high levels of betaine production in the seed of transgenic COX plants.  相似文献   
5.
Choline oxidase (EC 1.1.3.17) is a bifunctional enzyme that is capable of catalyzing glycine betaine biosynthesis from choline via betaine aldehyde. A gene (cox) encoding this enzyme in the gram-positive soil bacterium Arthrobacter pascens was isolated and characterized. This gene is contained within a 1.9-kb fragment that encodes a polypeptide of approximately 66 kDa. Transfer of this gene to an Escherichia coli mutant that is defective in betaine biosynthesis resulted in an osmotolerant phenotype. This phenotype was associated with the ability of the host to synthesize and assemble an enzymatically active choline oxidase that could catalyze biosynthesis of glycine betaine from an exogenous supply of choline. Although glycine betaine functions as an osmolyte in several different organisms, it was not found to have this role in A. pascens. Instead, both choline and glycine betaine were utilized as carbon sources. In A. pascens synthesis and activity of choline oxidase were modulated by carbon sources and were susceptible to catabolite repression. Thus, cox, a gene concerned with carbon utilization in A. pascens, was found to play a role in adaptation to an environmental stress in a heterologous organism. In addition to providing a possible means of manipulating osmotolerance in other organisms, the cox gene offers a model system for the study of choline oxidation, an important metabolic process in both procaryotes and eucaryotes.  相似文献   
6.
We have demonstrated for the first time that the steroid metabolite, 2-methoxyestradiol (2-ME) is a powerful growth inhibitor of human osteosarcoma 143 B cell line by pleiotropic mechanisms involving cell cycle arrest at two different points and apoptosis. The ability of 2-ME to inhibit cell cycle at the respective points has been found concentration dependent. 1 microM 2-ME inhibited cell cycle at G1 phase while 10 microM 2-ME caused G2/M cell cycle arrest. As a natural estrogen metabolite 2-ME is expected to perturb the stability of microtubules (MT) in vivo analogously to Taxol--the MT binding anticancer agent. Contrary to 2-ME, Taxol induced accumulation of osteosarcoma cells in G2/M phase of cell cycle only. The presented data strongly suggest two different mechanisms of cytotoxic action of 2-ME at the level of a single cell.  相似文献   
7.
8.
Glycinebetaine (betaine) affords osmoprotection in bacteria, plants and animals, and protects cell components against harsh conditions in vitro. This and a compelling body of other evidence have encouraged the engineering of betaine production in plants lacking it. We have installed the metabolic step for oxidation of choline, a ubiquitous substance, to betaine in three diverse species, Arabidopsis, Brassica napus, and tobacco (Nicotiana tabacum), by constitutive expression of a bacterial choline oxidase gene. The highest levels of betaine in independent transgenics were 18.6, 12.8, and 13 micromol g(-1) dry weight, respectively, values 10- to 20-fold lower than the levels found in natural betaine producers. However, choline-fed transgenic plants synthesized substantially more betaine. Increasing the choline supplementation further enhanced betaine synthesis, up to 613 micromol g(-1) dry weight in Arabidopsis, 250 micromol g(-1) dry weight in B. napus, and 80 micromol g(-1) dry weight in tobacco. These studies demonstrate the need to enhance the endogenous choline supply to support accumulation of physiologically relevant amounts of betaine. A moderate stress tolerance was noted in some but not all betaine-producing transgenic lines based on relative shoot growth. Furthermore, the responses to stresses such as salinity, drought, and freezing were variable among the three species.  相似文献   
9.
Protoplasts of Lens culinaris Medik. cv. Eston were isolated from epicotyl tissues of seedlings grown on Murashige & Skoog basal medium. For isolating the protoplasts, epicotyl tissues were digested for 12–14 h at 25°C in an isolation mixture (pH 5.7) containing 1% Cellulase RS, 0.5% Driselase, 0.25% Pectolyase Y23, 0.2M calcium chloride, 10 mM mannitol and 10 mM MES. Protoplasts were purified by flotation over 20% sucrose and washed with 0.2 M calcium chloride solution supplemented with 10 mM mannitol. Purified protoplasts were cultured at a density of 105 ml-1 in agarose (Seaplaque, 0.6%) blocks which were suspended in an identical but liquid KM8P culture medium lacking amino acids, ammonium nitrate, and coconut water but containing 0.35 M glucose and a growth regulator complement of either 2.2 M 2,4-dichlorophenoxyacetic acid (2,4-D), 2.7 M naphthaleneacetic acid (NAA), 2.3 M N-(2-furanylmethyl)-1H-purine-6-amine (kinetin), 2.2 M benzylamino purine (BAP), 2.3 M 2-methyl-4-(1H-purine-6-ylamino)-2-buten-1-ol (zeatin), and 1.4 M gibberellic acid (GA3), or 5.4 M NAA and 2.2 M each of 2,4-D and BAP. The osmotic potential of the liquid culture medium was gradually reduced over a period of 3 weeks by replacing the spent medium with a fresh medium containing 0.25, 0.1 and 0 M glucose at weekly intervals. About 6% of the dividing protoplasts developed into cell colonies after 3 weeks of culture at 25°C in diffuse light (10 E m-2s-1). In 35–42 days the microcolonies were about 1 mm in diameter and developed into calli on transfer to agar-solidified B5 medium supplemented with growth regulators used in the protoplast culture medium and 5 mM glutamine. Attempts to regenerate plants from protoplast-derived calli have so far been unsuccessful.Department of Applied Microbiology and Food Science, University of Saskatchewan  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号