首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  2023年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2003年   1篇
  2002年   2篇
  1999年   3篇
  1995年   1篇
  1994年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
The psbP gene product, the so called 23 kDa extrinsic protein, is involved in water oxidation carried out by Photosystem II. However, the protein is not absolutely required for water oxidation. Here we have studied Photosystem II mediated electron transfer in a mutant of Chlamydomonas reinhardtii, the FUD 39 mutant, that lacks the psbP protein. When grown in dim light the Photosystem II content in thylakoid membranes of FUD 39 is approximately similar to that in the wild-type. The oxygen evolution is dependent on the presence of chloride as a cofactor, which activates the water oxidation with a dissociation constant of about 4 mM. In the mutant, the oxygen evolution is very sensitive to photoinhibition when assayed at low chloride concentrations while chloride protects against photoinhibition with a dissociation constant of about 5 mM. The photoinhibition is irreversible as oxygen evolution cannot be restored by the addition of chloride to inhibited samples. In addition the inhibition seems to be targeted primarily to the Mn-cluster in Photosystem II as the electron transfer through the remaining part of Photosystem II is photoinhibited with slower kinetics. Thus, this mutant provides an experimental system in which effects of photoinhibition induced by lesions at the donor side of Photosystem II can be studied in vivo.Abbreviations Chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - DPC 2,2-diphenylcarbonic dihydrazide - HEPES 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid - P680 the primary electron donor to PS II - PpBQ phenyl-p-benzoquinone - PS II Photosystem II - QA the first quinone acceptor of PS II - QB the second quinone acceptor of PS II - SDS sodium dodecyl sulfate - Tris tris(hydroxymethyl)aminomethane - TyrD accessory electron donor on the D2-protein - TyrZ tyrosine residue, acting as electron carrier between P680 and the water oxidizing system  相似文献   
2.
Two protein families that are critical for vesicle transport are the Syntaxin and Munc18/Sec1 families of proteins. These two molecules form a high affinity complex and play an essential role in vesicle docking and fusion. Munc18c was expressed as an N-terminally His-tagged fusion protein from recombinant baculovirus in Sf9 insect cells. His-tagged Munc18c was purified to homogeneity using both cobalt-chelating affinity chromatography and gel filtration chromatography. With this simple two-step protocol, 3.5 mg of purified Munc18c was obtained from a 1L culture. Further, the N-terminal His-tag could be removed by thrombin cleavage while the tagged protein was bound to metal affinity resin. Recombinant Munc18c produced in this way is functional, in that it forms a stable complex with the SNARE interacting partner, syntaxin4. Thus we have developed a method for producing and purifying large amounts of functional Munc18c--both tagged and detagged--from a baculovirus expression system. We have also developed a method to purify the Munc18c:syntaxin4 complex. These methods will be employed for future functional and structural studies.  相似文献   
3.
During dual-phase fermentations using Escherichia coli engineered for succinic acid production, the productivity and viable cell concentration decrease as the concentration of succinic acid increases. The effects of succinic acid on the fermentation kinetics, yield, and cell viability were investigated by resuspending cells in fresh media after selected fermentation times. The cellular succinic acid productivity could be restored, but cell viability continuously decreased throughout the fermentations by up to 80% and subsequently the volumetric productivity was reduced. Omitting complex nutrients in the resuspension media had no significant effect on cellular succinate productivity and yield, although the viable cell concentration and thus the volumetric productivity was reduced by approximately 20%. By resuspending the cells, the amount of succinate produced during a 100-h fermentation was increased by more than 60%. The results demonstrate that by product removal succinic acid productivity can be maintained at high levels for extended periods of time.  相似文献   
4.
The economical viability of biochemical succinic acid production is a result of many processing parameters including final succinic acid concentration, recovery of succinate, and the volumetric productivity. Maintaining volumetric productivities >2.5 g L?1 h?1 is important if production of succinic acid from renewable resources should be competitive. In this work, the effects of organic acids, osmolarity, and neutralizing agent (NH4OH, KOH, NaOH, K2CO3, and Na2CO3) on the fermentative succinic acid production by Escherichia coli AFP184 were investigated. The highest concentration of succinic acid, 77 g L?1, was obtained with Na2CO3. In general, irrespective of the base used, succinic acid productivity per viable cell was significantly reduced as the concentration of the produced acid increased. Increased osmolarity resulting from base addition during succinate production only marginally affected the productivity per viable cell. Addition of the osmoprotectant glycine betaine to cultures resulted in an increased aerobic growth rate and anaerobic glucose consumption rate, but decreased succinic acid yield. When using NH4OH productivity completely ceased at a succinic acid concentration of ~40 g L?1. Volumetric productivities remained at 2.5 g L?1 h?1 for up to 10 h longer when K‐ or Na‐bases where used instead of NH4OH. The decrease in cellular succinic acid productivity observed during the anaerobic phase was found to be due to increased organic acid concentrations rather than medium osmolarity. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
5.
Succinic acid (SA) is an important platform molecule in the synthesis of a number of commodity and specialty chemicals. In the present work, dual-phase batch fermentations with the E. coli strain AFP184 were performed using a medium suited for large-scale industrial production of SA. The ability of the strain to ferment different sugars was investigated. The sugars studied were sucrose, glucose, fructose, xylose, and equal mixtures of glucose and fructose and glucose and xylose at a total initial sugar concentration of 100 g L-1. AFP184 was able to utilize all sugars and sugar combinations except sucrose for biomass generation and succinate production. For sucrose as a substrate no succinic acid was produced and none of the sucrose was metabolized. The succinic acid yield from glucose (0.83 g succinic acid per gram glucose consumed anaerobically) was higher than the yield from fructose (0.66 g g-1). When using xylose as a carbon source, a yield of 0.50 g g-1 was obtained. In the mixed-sugar fermentations no catabolite repression was detected. Mixtures of glucose and xylose resulted in higher yields (0.60 g g-1) than use of xylose alone. Fermenting glucose mixed with fructose gave a lower yield (0.58 g g-1) than fructose used as the sole carbon source. The reason is an increased pyruvate production. The pyruvate concentration decreased later in the fermentation. Final succinic acid concentrations were in the range of 25-40 g L-1. Acetic and pyruvic acid were the only other products detected and accumulated to concentrations of 2.7-6.7 and 0-2.7 g L-1. Production of succinic acid decreased when organic acid concentrations reached approximately 30 g L-1. This study demonstrates that E. coli strain AFP184 is able to produce succinic acid in a low cost medium from a variety of sugars with only small amounts of byproducts formed.  相似文献   
6.
7.
In vivo photoactivation of Photosystem II was studied in the FUD39 mutant strain of the green alga Chlamydomonas reinhardtii which lacks the 23 kDa protein subunit involved in water oxidation. Dark grown cells, devoid of oxygen evolution, were illuminated at 0.8 μE m-2s-1 light intensity which promotes optimal activation of oxygen evolution, or at 17 μE m-2s-1, where photoactivation compete with deleterious photodamage. The involvement of the two redox active cofactors tyrosineD and cytochrome b559 during the photoactivation process, was investigated by EPR spectroscopy. TyrosineD on the D2 reaction center protein functions as auxiliary electron donor to the primary donor P+680 during the first minutes of photoactivation at 0.8 μE m-2s-1 (compare with Rova et al., Biochemistry, 37 (1998) 11039-11045.). Here we show that also cytochrome b559 was rapidly oxidized during the first 10 min of photoactivation with a similar rate to tyrosineD. This implies that both cytochrome b559 and tyrosineD may function as auxiliary electron donors to P+680 and/or the oxidized tyrosine&z.ccirf;Z on the D1 protein, to avoid photoinhibition before successful photoactivation was accomplished. As the catalytic water-oxidation successively became activated, TyrosineD remained oxidized while cytochrome b559 became rereduced to the equilibrium level that was observed prior to photoactivation. At 17 μE m-2s-1 light intensity, where photoinhibition competes significantly with photoactivation, tyrosineD was very rapidly completely oxidized, after which the amount of oxidized tyrosineD decreased due to photoinhibition. In contrast, cytochrome b559 became reduced during the first 2 min of photoactivation at 17 μE m-2s-1. After this, it was reoxidized, returning to the equilibrium level within 10 min. Thus, during in vivo photoactivation in high-light cytochrome b559 serves two functions. Initially, it probably oxidizes the reduced primary acceptor pheophytin, thereby relieving the acceptor side of reductive pressure, and later on it serves as auxiliary electron donor, preventing donor-side photoinhibition.  相似文献   
8.
A cladistic analysis was performed using nucleotide sequence variation in therps16 intron and thetrmL-F region (plastid DNA).Arcytophyllum belongs in a subclade of the tribe Spermacoceae (s.l.) together with the American species presently classified in the generaHedyotis andHoustonia. This subclade is morphologically characterized by cymbiform seeds.Arcytophyllum is the sister group of all AmericanHedyotis andHoustonia and it is suggeste that these latter would be most conveniently treated as a single genus, the correct name of which would beHoustonia.Arcytophyllum should be circumscribed such that it excludesA. serpyllaceum, which is not a member of theArcytophyllum-Houstonia clade but more closely related toBouvardia. The phylogeny that was reconstructed suggests that the ancestral area of theArcytophyllum-Houstonia clade is the South American tectonic plate.  相似文献   
9.
Applied Microbiology and Biotechnology - After publication of the original article, authors found that there has been a minor mistake in the units of kcat and kcat/Km in Table 2. The units should...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号