首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   7篇
  2020年   1篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2010年   9篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
2.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
3.
4.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
5.
Irisin was first identified in muscle cells. We detected irisin immunoreactivity in various organs of the crested porcupine (Hystrix cristata). In the epidermis, irisin immunoreactivity was localized mainly in stratum basale, stratum spinosum and stratum granulosum layers; immunoreactivity was not observed in the stratum corneum. In the dermis, irisin was found in the external and internal root sheath, cortex and medulla of hair follicles, and in sebaceous glands. Irisin immunoreactivity was found in the neural retina and skeletal muscle fibers associated with the eye. The pineal and thyroid glands also exhibited irisin immunoreactivity.  相似文献   
6.
7.
The objective of this study was to compare, by using identical sample types, the Salmonella enterica prevalences and serovar diversities between pigs necropsied on the farm and those necropsied at the abattoir after transport and holding. We necropsied 567 market weight pigs (>70 kg) from six herds. Pigs were alternately assigned to be necropsied on the farm or at the abattoir. One-half of the group was sent in clean, disinfected trailers to slaughter at a commercial abattoir. After transport (mean distance, 169 km) and 2 to 3 h of holding in antemortem pens, these pigs were necropsied. The 50 pigs remaining on the farm were necropsied the following day. The same sample types and amounts were collected for S. enterica culture at both locations. Results show a sevenfold-higher (P < 0.001) S. enterica isolation rate from pigs necropsied at the abattoir (39.9%; 114 of 286) than from those necropsied on the farm (5.3%; 15 of 281). This difference was also observed for each individual herd. All sample types showed a significantly higher prevalence when comparing abattoir to on-farm collection, respectively: lymph nodes, 9.15 versus 3.6%; cecal contents, 13.6 versus 1.8%; 1 g of fecal matter, 25.2 versus 0.7%. Recovery of additional serovars at the abattoir suggests the pigs are receiving S. enterica from extra-farm sources. This study demonstrates that rapid infection during transport, and particularly during holding, is a major reason for increased S. enterica prevalence in swine. This finding identifies the holding pen as an important S. enterica control point in the pork production chain.  相似文献   
8.
The objective of this study was to determine whether abattoir pens can provide a Salmonella enterica infection source during the 2 to 4 h of preharvest holding. Previous work has suggested that pigs may be getting infected, but little has been reported on the environmental contamination of abattoir holding pens. For 24 groups of pigs studied ( approximately 150 animals/group) at two high-capacity abattoirs, six pooled fecal samples (n, 10 per pool) were collected from each transport trailer immediately after pigs were unloaded. Holding pens were sampled (one drinking water sample and six pooled floor samples consisting of swabs, residual liquid, and feces) prior to entry of study pigs for the routine holding period ( approximately 2.5 h). After slaughter, cecal contents and ileocecal lymph nodes were collected, on the processing line, from 30 pigs in each studied group. All samples were cultured for the isolation and identification of S. enterica by primary enrichment in GN-Hajna and tetrathionate broths, secondary enrichment in Rappaport-Vassiliadis broth, and plating on brilliant green sulfa and xylose-lysine-tergitol-4 agars, followed by biochemical and serological identification. The study pens were highly contaminated with S. enterica; all holding pens sampled had at least one positive sample. Additionally, 33% (8 of 24) of drinking water samples were positive for S. enterica. All 24 groups of pigs had S. enterica-positive cecal contents and ileocecal lymph nodes, including those groups from transport trailers with no positive samples. From pigs, trailers, and pens, 586 isolates representing 36 different Salmonella serovars were isolated. Of the 353 isolates from pigs (109 from ileocecal lymph nodes plus 244 from cecal contents), 19% were identified as belonging to the same serovars as those isolated from the respective pens; 27% were identified as belonging to the same serovars as those isolated from the trailers. Sixteen percent of the unique serovars were isolated from both pigs and pens, suggesting that pens served as the infection source. This study demonstrates highly contaminated abattoir holding pens and watering sources. It also demonstrates that holding pens can serve as an infection source. This study identifies the abattoir holding pens as a significant hazard and a potential control point for Salmonella contamination in the preharvest pork production chain.  相似文献   
9.
Cpkk1 and Cpkk2 are two previously characterized Mitogen‐activated protein kinase kinases (MEK) from Cryphonectria parasitica. For the characterization of the third MEK, primers designed to a conserved region of the known fungal MEK sequences were used in a PCR reaction to amplify genomic DNA from C. parasitica. The sequence of the resulting amplicon was compared to known sequences in the database using a Blast search. Results of the sequence comparison indicated that the initial fragment obtained encoded for a new MEK from C. parasitica, that had highest homology to Pbs2 from Saccharomyces cerevisiae. By inverse PCR we obtained a genomic fragment spanning the entire coding sequence of this MEK, which was named Cpkk3. The cDNA of Cpkk3 was obtained by compiling the sequences of RT‐PCR products resulting from the amplification of purified mRNA. TaqMan® Probes were designed to analyse the expression of Cpkk1, Cpkk2 and Cpkk3 mRNA through RT‐Real Time PCR. This protocol allowed the expression of Cpkk3 to be successfully compared to the expression of Cpkk1 and Cpkk2, two previously cloned C. parasitica MEKs. No variation in expression was associated with the presence of a virus after 2 days of growth in standard conditions whereas an increase in the expression level of all the three MEKs was shown after 4 days of growth.  相似文献   
10.
Contamination of meat products with food-borne pathogens usually results from the carcass coming in contact with the feces of an infected animal during processing. In the case of Salmonella, pigs can become colonized with the organism during transport and lairage from contaminated trailers and holding pens, resulting in increased pathogen shedding just prior to processing. Increased shedding, in turn, amplifies the likelihood of carcass contamination by magnifying the amount of bacteria that enters the processing facility. We conducted a series of experiments to test whether phage therapy could limit Salmonella infections at this crucial period. In a preliminary experiment done with small pigs (3 to 4 weeks old; 30 to 40 lb), administration of an anti-Salmonella phage cocktail at the time of inoculation with Salmonella enterica serovar Typhimurium reduced Salmonella colonization by 99.0 to 99.9% (2- to 3-log reduction) in the tonsils, ileum, and cecum. To test the efficacy of phage therapy in a production-like setting, we inoculated four market-weight pigs (in three replicates) with Salmonella enterica serovar Typhimurium and allowed the challenged pigs to contaminate a holding pen for 48 h. Sixteen naïve pigs were randomly split into two groups which received either the anti-Salmonella phage cocktail or a mock treatment. Both groups of pigs were comingled with the challenged pigs in the contaminated pen. Treatment with the anti-Salmonella phage cocktail significantly reduced cecal Salmonella concentrations (95%; P < 0.05) while also reducing (numerically) ileal Salmonella concentrations (90%; P = 0.06). Additional in vitro studies showed that the phage cocktail was also lytic against several non-Typhimurium serovars.The U.S. Centers for Disease Control and Prevention report approximately 40,000 culture-confirmed cases of salmonellosis each year in the United States, which result in approximately 400 deaths (5). Many Salmonella outbreaks are associated with meat and poultry (20), with contamination usually resulting from the carcass coming into contact with the feces of a Salmonella-infected animal during processing (22).There is an association between pork products and Salmonella, as swine are generally considered to be the second largest reservoir of the organism among food animals after poultry. Although infections in adult swine are normally asymptomatic, once colonized, pigs can shed the organism in the feces for weeks and sometimes months (7).While a great deal of research has been done on developing on-farm anti-Salmonella intervention strategies, these methods are confounded by the fact that Salmonella prevalence in pigs often increases once the animals leave the farm as a result of (i) stress-induced reactivation of preexisting infections (14), (ii) new infections from contaminated transport trailers and processing facility holding pens (12, 15, 24, 31), or (iii) both. Consequently, animals with no history of previous Salmonella infection can begin shedding the organism just prior to processing, which is highly problematic in terms of food safety.We hypothesized that phage therapy could be developed as an effective means to counteract transport- and lairage-associated increases in Salmonella colonization in swine. Phage therapy has the advantage of being natural, nontoxic, and relatively inexpensive and could be used just prior to slaughter, unlike many antibiotics (18, 28). Here we describe a series of experiments demonstrating that treating market-weight pigs with an anti-Salmonella phage cocktail prior to their comingling with Salmonella-infected pigs in a highly contaminated environment resulted in reductions in Salmonella colonization. We further show that the phage cocktail could be effectively microencapsulated, making feed or water delivery possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号