全文获取类型
收费全文 | 554篇 |
免费 | 14篇 |
专业分类
568篇 |
出版年
2024年 | 1篇 |
2022年 | 10篇 |
2021年 | 16篇 |
2020年 | 13篇 |
2019年 | 4篇 |
2018年 | 13篇 |
2017年 | 11篇 |
2016年 | 24篇 |
2015年 | 32篇 |
2014年 | 26篇 |
2013年 | 37篇 |
2012年 | 40篇 |
2011年 | 45篇 |
2010年 | 26篇 |
2009年 | 26篇 |
2008年 | 43篇 |
2007年 | 29篇 |
2006年 | 29篇 |
2005年 | 25篇 |
2004年 | 19篇 |
2003年 | 19篇 |
2002年 | 23篇 |
2001年 | 2篇 |
2000年 | 4篇 |
1999年 | 6篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1995年 | 5篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 7篇 |
1991年 | 3篇 |
1990年 | 3篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 4篇 |
1986年 | 1篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1968年 | 4篇 |
1967年 | 2篇 |
排序方式: 共有568条查询结果,搜索用时 0 毫秒
1.
Laura Moquet Rossana Bacchetta Estelle Laurent Anne-Laure Jacquemart 《Biodiversity and Conservation》2017,26(3):687-702
Modifications of landscape structure and composition can decrease the availability of floral resources, resulting in the decline of many pollinator species, including bumblebees. These declines may have significant ecological consequences, because bumblebees pollinate a large range of plant species. Our study was carried out in heathlands, open semi-natural habitats that have decreased considerably due to human activities. We analysed how floral resources affect bumblebee communities throughout the colony lifetime at three scales: plot scale, heathland patch scale, and landscape scale. Floral density at the plot scale and spruce plantations at the landscape scale influenced bumblebee communities. The abundance of bumblebees on ericaceous species was higher when the landscape included a substantial proportion of unsuitable foraging habitat (i.e., spruce plantations). Both life history traits and colony life cycle stage influenced bumblebee responses to the availability of floral resources. Bumblebees were more affected by floral resources during the colony development phase than during the nest-foundation or mating phases. Moreover, bumblebees of species that form large colonies needed larger quantities of favourable foraging habitat, compared with small-colony bees, and their proportion decreased in habitats dominated by spruce plantations. In conclusion, the conservation of plant–bumblebee interactions will require management at a larger spatial scale than the restricted protected habitats. Moreover, at the landscape scale, both quantity of favourable foraging patches and their ecological continuity are important to conserve both small- and large- colony species. 相似文献
2.
In higher eukaryotes, increasing evidence suggests, gene expression is to a large degree controlled by RNA. Regulatory RNAs have been implicated in the management of neuronal function and plasticity in mammalian brains. However, much of the molecular-mechanistic framework that enables neuronal regulatory RNAs to control gene expression remains poorly understood. Here, we establish molecular mechanisms that underlie the regulatory capacity of neuronal BC RNAs in the translational control of gene expression. We report that regulatory BC RNAs employ a two-pronged approach in translational control. One of two distinct repression mechanisms is mediated by C-loop motifs in BC RNA 3' stem-loop domains. These C-loops bind to eIF4B and prevent the factor's interaction with 18S rRNA of the small ribosomal subunit. In the second mechanism, the central A-rich domains of BC RNAs target eIF4A, specifically inhibiting its RNA helicase activity. Thus, BC RNAs repress translation initiation in a bimodal mechanistic approach. As BC RNA functionality has evolved independently in rodent and primate lineages, our data suggest that BC RNA translational control was necessitated and implemented during mammalian phylogenetic development of complex neural systems. 相似文献
3.
Eosinophils, leukocytes involved in allergic, inflammatory and immunoregulatory responses, have a distinct capacity to rapidly secrete preformed granule-stored proteins through piecemeal degranulation (PMD), a secretion process based on vesicular transport of proteins from within granules for extracellular release. Eosinophil-specific granules contain cytokines and cationic proteins, such as major basic protein (MBP). We evaluated structural mechanisms responsible for mobilizing proteins from within eosinophil granules. Human eosinophils stimulated for 30-60 min with eotaxin, regulated on activation, normal, T-cell expressed and secreted (RANTES) or platelet activating factor exhibited ultrastructural features of PMD (e.g. losses of granule contents) and extensive vesiculotubular networks within emptying granules. Brefeldin A inhibited granule emptying and collapsed intragranular vesiculotubular networks. By immunonanogold ultrastructural labelings, CD63, a tetraspanin membrane protein, was localized within granules and on vesicles outside of granules, and mobilization of MBP into vesicles within and extending from granules was demonstrated. Electron tomography with three dimension reconstructions revealed granule internal membranes to constitute an elaborate tubular network able to sequester and relocate granule products upon stimulation. We provide new insights into PMD and identify eosinophil specific granules as organelles whose internal tubulovesicular networks are important for the capacity of eosinophils to secrete, by vesicular transport, their content of preformed and granule-stored cytokines and cationic proteins. 相似文献
4.
5.
Ramos-Echazábal G Chinea G García-Fernández R Pons T 《Journal of cellular biochemistry》2012,113(7):2364-2374
Human nucleophosmin/B23 is a phosphoprotein involved in ribosome biogenesis, centrosome duplication, cancer, and apoptosis. Its function, localization, and mobility within cells, are highly regulated by phosphorylation events. Up to 21 phosphosites of B23 have been experimentally verified even though the corresponding kinase is known only for seven of them. In this work, we predict the phosphorylation sites in human B23 using six kinase-specific servers (KinasePhos 2.0, PredPhospho, NetPhosK 1.0, PKC Scan, pkaPS, and MetaPredPS) plus DISPHOS 1.3, which is not kinase specific. The results were integrated with information regarding 3D structure and residue conservation of B23, as well as cellular localizations, cellular processes, signaling pathways and protein-protein interaction networks involving both B23 and each predicted kinase. Thus, all 40 potential phosphosites of B23 were predicted with significant score (>0.50) as substrates of at least one of 38 kinases. Thirteen of these residues are newly proposed showing high susceptibility of phosphorylation considering their solvent accessibility. Our results also suggest that the enzymes CDKs, PKC, CK2, PLK1, and PKA could phosphorylate B23 at higher number of sites than those previously reported. Furthermore, PDK, GSK3, ATM, MAPK, PKB, and CHK1 could mediate multisite phosphorylation of B23, although they have not been verified as kinases for this protein. Finally, we suggest that B23 phosphorylation is related to cellular processes such as apoptosis, cell survival, cell proliferation, and response to DNA damage stimulus, in which these kinases are involved. These predictions could contribute to a better understanding, as well as addressing further experimental studies, of B23 phosphorylation. 相似文献
6.
7.
Rossana Saracino Chiara Capponi Sara Di Persio Carla Boitani Silvia Masciarelli Francesco Fazi Stefania Fera Elena Vicini 《Molecular reproduction and development》2020,87(4):419-429
Glial cell line‐derived neurotrophic factor (GDNF) and retinoic acid (RA) are two molecules crucial for the regulation of the spermatogonial compartment of the testis. During the cycle of the seminiferous epithelium, their relative concentration oscillates with lower GDNF levels in stages where RA levels are high. It has been recently shown that RA negatively regulates Gdnf expression but the mechanisms behind are so far unknown. Here, we show that RA directly downregulates Gdnf mRNA levels in primary murine Sertoli cells through binding of RARα to a novel DR5‐RARE on Gdnf promoter. Pharmacological inhibition and chromatin immunoprecipitation–quantitative polymerase chain reaction analysis suggested that the underlying mechanism involved histone deacetylase activity and epigenetic repression of Gdnf promoter upon RA treatment. 相似文献
8.
Emanuela Guerra Rossano Lattanzio Rossana La Sorda Francesca Dini Gian Mario Tiboni Mauro Piantelli Saverio Alberti 《PloS one》2012,7(11)
Congenital tufting enteropathy (CTE) is a life-threatening hereditary disease that is characterized by enteric mucosa tufting degeneration and early onset, severe diarrhea. Loss-of-function mutations of the human EPCAM gene (TROP1, TACSTD1) have been indicated as the cause of CTE. However, loss of mTrop1/Epcam in mice appeared to lead to death in utero, due to placental malformation. This and indications of residual Trop-1/EpCAM expression in cases of CTE cast doubt on the role of mTrop1/Epcam in this disease. The aim of this study was to determine the role of TROP1/EPCAM in CTE and to generate an animal model of this disease for molecular investigation and therapy development. Using a rigorous gene-trapping approach, we obtained mTrop1/Epcam -null (knockout) mice. These were born alive, but failed to thrive, and died soon after birth because of hemorrhagic diarrhea. The intestine from the mTrop1/Epcam knockout mice showed intestinal tufts, villous atrophy and colon crypt hyperplasia, as in human CTE. No structural defects were detected in other organs. These results are consistent with TROP1/EPCAM loss being the cause of CTE, thus providing a viable animal model for this disease, and a benchmark for its pathogenetic course. In the affected enteric mucosa, E-cadherin and β-catenin were shown to be dysregulated, leading to disorganized transition from crypts to villi, with progressive loss of membrane localization and increasing intracellular accumulation, thus unraveling an essential role for Trop-1/EpCAM in the maintenance of intestinal architecture and functionality.Supporting information is available for this article. 相似文献
9.
Corona C Frazzini V Silvestri E Lattanzio R La Sorda R Piantelli M Canzoniero LM Ciavardelli D Rizzarelli E Sensi SL 《PloS one》2011,6(3):e17971
Background
The pathogenic road map leading to Alzheimer''s disease (AD) is still not completely understood; however, a large body of studies in the last few years supports the idea that beside the classic hallmarks of the disease, namely the accumulation of amyloid-β (Aβ) and neurofibrillary tangles, other factors significantly contribute to the initiation and the progression of the disease. Among them, mitochondria failure, an unbalanced neuronal redox state, and the dyshomeostasis of endogenous metals like copper, iron, and zinc have all been reported to play an important role in exacerbating AD pathology. Given these factors, the endogenous peptide carnosine may be potentially beneficial in the treatment of AD because of its free-radical scavenger and metal chelating properties.Methodology
In this study, we explored the effect of L-carnosine supplementation in the 3xTg-AD mouse, an animal model of AD that shows both Aβ- and tau-dependent pathology.Principal Findings
We found that carnosine supplementation in 3xTg-AD mice promotes a strong reduction in the hippocampal intraneuronal accumulation of Aβ and completely rescues AD and aging-related mitochondrial dysfunctions. No effects were found on tau pathology and we only observed a trend toward the amelioration of cognitive deficits.Conclusions and Significance
Our data indicate that carnosine can be part of a combined therapeutic approach for the treatment of AD. 相似文献10.
Three innovative and complementary morphological approaches were employed to study the T cell/antigen presenting cell (APC) interaction: (i) high resolution three-dimensional confocal microscopy of the T cell-APC contact site; (ii) time lapse video recording in living T cells of [Ca2+]I and changes in distribution of various GFP fusion proteins with TCR/CD3-zeta complex associated- and other signaling components; (iii) measurement of lateral TCR mobility and that of recruited signaling components using techniques based on fluorescence recovery after photo-bleaching. These approaches were combined with biochemical and functional experiments to investigate two principal issues: (A) Recruitment and the three-dimensional arrangement of receptors and signaling components at the contact site between human CD4+ T lymphocytes and APCs, (B) Structure of the immunological synapse formed at the contact site between cytotoxic T lymphocytes (CTLs) and target cells. We discuss evidence indicating that TCR engagement and triggering can occur in the absence of large-scale molecular segregation into the T cell-APC contact site. Taken together our results indicate that although not required for TCR engagement and triggering, formation of the IS is important to reinforce TCR-mediated signal transduction and achieve full T cell activation. 相似文献