首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   17篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   10篇
  2012年   10篇
  2011年   7篇
  2010年   7篇
  2009年   3篇
  2008年   11篇
  2007年   13篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   9篇
  2002年   7篇
  2001年   4篇
  2000年   7篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   3篇
  1992年   1篇
  1989年   3篇
  1986年   2篇
  1970年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有143条查询结果,搜索用时 31 毫秒
1.
Monitoring successional advancement is a complex field involving a constant search for applied ecological indicators which facilitate monitoring of secondary forests for both active and passive restoration. In this study, the authors investigate the successional advancement of floristics and tree structure within Araucaria Forest (AF) fragments under passive restoration in a context where exotic tree plantations (mainly Pinus L. genus) dominate the landscape. The ecological indicators used were floristic dissimilarity (β‐diversity inferences), indicator species, ecological groups of species, basal area, and species abundance distribution (SAD) models (α‐diversity inferences). A total of 182 tree species belonging to 91 genera and 43 botanical families were identified. A high β diversity was verified for which each site has indicator species (for the locations CD—Dicksonia sellowiana; CO—Cryptocarya aschersoniana; and PG—Pinus taeda), where pioneer species contributed to much of the abundance. Different SAD models are useful for describing passive restoration sites in exotic tree plantation landscapes, namely Lognormal, Mandelbrot, and Zipf. SAD models together with basal area, taxonomic group (e.g. Myrtaceae assemblage), and tree abundance in ecological groups are strategic ecological indicators for monitoring successional advancement in AF.  相似文献   
2.
The correlation between vegetation patterns (species distribution and richness) and altitudinal variation has been widely reported for tropical forests, thereby providing theoretical basis for biodiversity conservation. However, this relationship may have been oversimplified, as many other factors may influence vegetation patterns, such as disturbances, topography and geographic distance. Considering these other factors, our primary question was: is there a vegetation pattern associated with substantial altitudinal variation (10–1,093 m a.s.l.) in the Atlantic Rainforest—a top hotspot for biodiversity conservation—and, if so, what are the main factors driving this pattern? We addressed this question by sampling 11 1-ha plots, applying multivariate methods, correlations and variance partitioning. The Restinga (forest on sandbanks along the coastal plains of Brazil) and a lowland area that was selectively logged 40 years ago were floristically isolated from the other plots. The maximum species richness (>200 spp. per hectare) occurred at approximately 350 m a.s.l. (submontane forest). Gaps, multiple stemmed trees, average elevation and the standard deviation of the slope significantly affected the vegetation pattern. Spatial proximity also influenced the vegetation pattern as a structuring environmental variable or via dispersal constraints. Our results clarify, for the first time, the key variables that drive species distribution and richness across a large altitudinal range within the Atlantic Rainforest.  相似文献   
3.
4.
Alpha-actinin is a cytoskeleton-binding protein involved in the assembly and regulation of the actin filaments. In this work molecular dynamics method was applied to investigate the mechanical behaviour of the human skeletal muscle α-actinin. Five configurations were unfolded at an elongation speed of 0.1 nm/ps in order to investigate the conformational changes occurring during the extension process. Moreover, a sensitivity analysis at different velocities was performed for one of the R2–R3 spectrin-like repeat configuration extracted in order to evaluate the effect of the pulling speed on the mechanical behaviour of the molecule. Two different behaviours were recognized with respect to the pulling speed. In particular, at speed higher than 0.025 nm/ps a continuous rearrangement without evident force peaks was obtained, on the contrary at lower speed evident peaks in the range 500–750 pN were detected. R3 repeat resulted more stable than R2 during mechanical unfolding, due to the lower hydrophobic surface available to the solvent. The characterization of the R2–R3 units can be useful for the development of cytoskeleton network models based on stiffness values obtained by analyses performed at the molecular level.  相似文献   
5.
Experimental studies on immature tendons have shown that the collagen fibril net is discontinuous. Manifold evidences, despite not being conclusive, indicate that mature tissue is discontinuous as well. According to composite theory, there is no requirement that the fibrils should extend from one end of the tissue to the other; indeed, an interfibrillar matrix with a low elastic modulus would be sufficient to guarantee the mechanical properties of the tendon. Possible mechanisms for the stress-transfer involve the interfibrillar proteoglycans and can be related to the matrix shear stress and to electrostatic non-covalent forces. Recent studies have shown that the glycosaminoglycans (GAGs) bound to decorin act like bridges between contiguous fibrils connecting adjacent fibril every 64-68 nm; this architecture would suggest their possible role in providing the mechanical integrity of the tendon structure. The present paper investigates the ability of decorin GAGs to transfer forces between adjacent fibrils. In order to test this hypothesis the stiffness of chondroitin-6-sulphate, a typical GAG associated to decorin, has been evaluated through the molecular mechanics approach. The obtained GAG stiffness is piecewise linear with an initial plateau at low strains (<800%) and a high stiffness region (3.1 x 10(-11)N/nm) afterwards. By introducing the calculated GAG stiffness in a multi-fibril model, miming the relative mature tendon architecture, the stress-strain behaviour of the collagen fibre was determined. The fibre incremental elastic modulus obtained ranges between 100 and 475 MPa for strains between 2% and 6%. The elastic modulus value depends directly on the fibril length, diameter and inversely on the interfibrillar distance. In particular, according to the obtained results, the length of the fibril is likely to play the major role in determining stiffness in mature tendons.  相似文献   
6.
Acetaminophen was administered acutely at the onset of reperfusion after 20 min of low-flow, global myocardial ischemia in isolated, perfused guinea pig hearts (Langendorff) to evaluate its influence in the postischemia, reperfused myocardium. Similarly prepared hearts were treated with vehicle or with uric acid (another phenol for comparison). Functionally, acetaminophen-treated hearts (0.35 mM) achieved significantly greater recovery during reperfusion. For example, left ventricular developed pressures at 40 min reperfusion were 38 +/- 3, 27 +/- 3, and 20 +/- 2 in the presence of acetaminophen (P < 0.05, relative to the other two groups), vehicle, and uric acid, respectively. Coronary perfusion pressures and calculated coronary vascular resistances, in the acetaminophen-treated hearts, were significantly lower at the same time (e.g., coronary perfusion pressures in the three groups, respectively, were 40 +/- 2 [P < 0.05], 51 +/- 3, and 65 +/- 12 mm Hg). Under baseline, control conditions, creatine kinase ranged from 12-15 units/liter in the three groups. It increased to 35-40 units/liter (P < 0.05) during ischemia but was significantly reduced by acetaminophen during reperfusion (e.g., 5.3 +/- 0.8 units/liter at 40 min). Oxidant-mediated chemiluminescence in all three treatment groups during baseline conditions and ischemia was similar (i.e., approximately 1.5-2.0 min for peak luminescence to reach its half maximal value). It took significantly more time during reperfusion for the oxidation of luminol in the presence of acetaminophen (>20 min, P < 0.05) than in its absence (3-8 min in uric acid- and vehicle-treated hearts). These results suggest that administration of acetaminophen (0.35 mM), at the onset of reperfusion, provides anti-oxidant-mediated cardioprotection in the postischemia, reperfused myocardium.  相似文献   
7.
Microtubules are supramolecular structures that make up the cytoskeleton and strongly affect the mechanical properties of the cell. Within the cytoskeleton filaments, the microtubule (MT) exhibits by far the highest bending stiffness. Bending stiffness depends on the mechanical properties and intermolecular interactions of the tubulin dimers (the MT building blocks). Computational molecular modeling has the potential for obtaining quantitative insights into this area. However, to our knowledge, standard molecular modeling techniques, such as molecular dynamics (MD) and normal mode analysis (NMA), are not yet able to simulate large molecular structures like the MTs; in fact, their possibilities are normally limited to much smaller protein complexes. In this work, we developed a multiscale approach by merging the modeling contribution from MD and NMA. In particular, MD simulations were used to refine the molecular conformation and arrangement of the tubulin dimers inside the MT lattice. Subsequently, NMA was used to investigate the vibrational properties of MTs modeled as an elastic network. The coarse-grain model here developed can describe systems of hundreds of interacting tubulin monomers (corresponding to up to 1,000,000 atoms). In particular, we were able to simulate coarse-grain models of entire MTs, with lengths up to 350 nm. A quantitative mechanical investigation was performed; from the bending and stretching modes, we estimated MT macroscopic properties such as bending stiffness, Young modulus, and persistence length, thus allowing a direct comparison with experimental data.  相似文献   
8.
9.
10.
Salmonella ΔcuiD strains form mucoid colonies on copper-containing solid media. We show here that this multiaggregative behavior is caused by the Rcs-dependent induction of colanic acid extracellular polysaccharide. Deletion of cps operon genes in a ΔcuiD strain increased the sensitivity to copper, indicating a role for colanic acid in copper resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号