首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   24篇
  278篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   15篇
  2013年   12篇
  2012年   12篇
  2011年   15篇
  2010年   10篇
  2009年   9篇
  2008年   15篇
  2007年   16篇
  2006年   14篇
  2005年   11篇
  2004年   14篇
  2003年   17篇
  2002年   10篇
  2001年   7篇
  2000年   8篇
  1999年   11篇
  1998年   9篇
  1997年   9篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
1.
A stochastic model for cooperative transitions in biological systems based on a Markov chain is proposed. This model requires only two parameters, the mean probability, p, and the coupling capacity, Deltap, which measure the probability of forming a new weak bond depending on the number of similar bonds already formed and it is also responsible for the transition. In this paper we show how the model works for a large number of identical molecules and how it can be useful for studying the noise around the centre of the transition where, increasing the degree of cooperativity, i.e. the number n in the well-known Hill equation, the width of the noise increases along with its fractal dimension. A simple relationship between the degree of cooperativity and the parameter Deltap is proposed, suggesting that the cooperativity of real biological transitions is related to the coupling capacity Deltap of the present model.  相似文献   
2.
Abstract: The voltage-dependent calcium channels present in mammalian and chicken brain synaptosomes were characterized pharmacologically using specific blockers of L-type channels (1,4-dihydropyridines), N-type channels (ω-conotoxin GVIA), and P-type channels [funnel web toxin (FTX) and ω-agatoxin IVA]. K+-induced Ca2+ uptake by chicken synaptosomes was blocked by ω-conotoxin GVIA (IC50 = 250 nM). This toxin at 5 µM did not block Ca2+ entry into rat frontal cortex synaptosomes. FTX and ω-agatoxin IVA blocked Ca2+ uptake by rat synaptosomes (IC50 = 0.17 µl/ml and 40 nM, respectively). Likewise, in chicken synaptosomes, FTX and ω-agatoxin IVA affected Ca2+ uptake. FTX (3 µl/ml) exerted a maximal inhibition of 40% with an IC50 similar to the one obtained in rat preparations, whereas with ω-agatoxin IVA saturation was not reached even at 5 µM. In chicken preparations, the combined effect of saturating concentrations of FTX (1 µl/ml) and different concentrations of ω-conotoxin GVIA showed no additive effects. However, the effect of saturating concentrations of FTX and ω-conotoxin GVIA was never greater than the one observed with ω-conotoxin GVIA. We also found that 60% of the Ca2+ uptake by rat and chicken synaptosomes was inhibited by ω-conotoxin MVIID (1 µM), a toxin that has a high index of discrimination against N-type channels. Conversely, nitrendipine (10 µM) had no significant effect on Ca2+ uptake in either the rat or the chicken. In conclusion, Ca2+ uptake by rat synaptosomes is potently inhibited by different P-type Ca2+ channel blockers, thus indicating that P-type channels are predominant in this preparation. In contrast, Ca2+ uptake by chicken synaptosomes is sensitive to ω-conotoxin GVIA, FTX, ω-agatoxin IVA, and ω-conotoxin MVIID. This suggests that a channel subtype with a mixed pharmacology is present in chicken synaptosomes.  相似文献   
3.
Changes in membrane properties during the differentiation process in K562 cells have been investigated. A decrease of lectin-induced agglutination has been detected. The agglutination assay revealed to be an early and sensitive test to monitor the induced differentiation of the K562 cells. Naturally occurring fluorescent fatty acids (cis- and trans-parinaric acids) and the recently developed multifrequency phase and modulation technique were used to study cell membrane properties. Changes in fluorescence lifetime and polarization are clearly associated with cell differentiation, suggesting the involvement of the cellular plasma membrane in the differentiation process.  相似文献   
4.
The fluorescence properties of the single tryptophanyl residue present in amicyanin from Thiobacillus versutus are very similar to those of azurin from Pseudomonas aeruginosa and other mononuclear blue copper proteins. The emission maximum is well structured and centered at 318 nm. The quantum yield is strongly affected by the presence of copper, the removal of which is accompanied by a more than sixfold increase in fluorescence, without change in shape. The fluorescence decay of holo-amicyanin is heterogeneous with a longer component of 5.7 ns and a shorter one of 0.7 ns accounting for 90% of the total emitting molecules. Copper-free amicyanin shows instead a single exponential decay (3.3 ns) of intrinsic fluorescence. This lifetime decreases as the temperature increases as does the longer lifetime component of holoamicyanin.  相似文献   
5.
Global nitrogen (N) deposition rates in terrestrial environments have quadrupled since preindustrial times, causing structural and functional changes of ecosystems. Different emission reduction policies were therefore devised. The aim of our study was to investigate if, and over what timescale, processes of soil organic matter (OM) transformation respond to a decline in atmospheric N deposition. A N‐saturated spruce forest (current N deposition: 34 kg ha?1 yr?1; critical N load: 14 kg ha?1 yr?1), where N deposition has been reduced to 11.5 kg ha?1 yr?1 since 1991, was studied. Besides organic C and organic and inorganic N, noncellulosic carbohydrates, amino sugars and amino acids were determined. A decline in organic N in litter indicated initial effects at plant level. However, there were no changes in biomarkers upon the reduction in N deposition. In addition, inorganic N was not affected by reduced N deposition. The results showed that OM cycling and transformation processes have not responded so far. It was concluded that no direct N deposition effects have occurred due to the large amount of stored organic N, which seems to compensate for the reduction in deposited N. Obviously, the time span of atmospheric N reduction (about 14.5 years) is too short compared with the mean turnover time of litter to cause indirect effects on the composition of organic C and N compounds. It is assumed that ecological processes, such as microbial decomposition or recycling of organic N and C, react slowly, but may start within the next decade with the incorporation of the new litter.  相似文献   
6.
 Gene sequences are rapidly accumulating for many commercially and scientifically important plants. These resources create the basis for developing sequence-based markers for mapping and tracking known (candidate) genes, thereby increasing the utility of genetic maps. Members of most of the gene families underlying the synthesis of seed oil fatty acids have been cloned from the medium-chain oilseed Cuphea. Allele-specific-PCR (AS-PCR) and single-strand conformational polymorphism (SSCP) markers were developed for 22 fatty acid synthesis genes belonging to seven gene families of Cuphea using homologous and heterologous DNA sequences. Markers were developed for 4 fatty-acyl-acyl carrier protein thioesterase, 2 β-ketoacyl-acyl carrier protein synthase I, 4 β-ketoacyl-acyl carrier protein synthase II, 3 β-ketoacyl-acyl carrier protein synthase III, 3 acyl carrier protein, 2 β-ketoacyl-acyl carrier protein reductase, and 4 enoyl-acyl carrier protein reductase loci. Eighty-eight percent (14 of 16) of the SSCP loci were polymorphic, whereas only 9% (2 of 22) of the AS-PCR loci were polymorphic. These markers were mapped using a Cuphea viscosissima×C. lanceolata F2 population and produced linkage groups of 10, 3, and 2 loci (3 loci segregated independently). The 10-locus linkage group had every gene but one necessary for the synthesis of 2- to 16-carbon fatty acids from acetyl-CoA and malonyl-ACP (the missing gene family was not mapped). SSCP analysis has broad utility for DNA fingerprinting and mapping genes and gene families. Received: 3 May 1996 / Accepted: 30 August 1996  相似文献   
7.
Aphids display life cycles largely determined by the photoperiod.During the warm long-day seasons.most aphid species reproduce by viviparous parthenogenesis.The shortening of the photoperiod in autumn induces a switch to sexual reproduction.Males and sexual females mate to produce overwintering resistant eggs.In addition to this full life cycle(holocycle),there are anholocyelic lineages that do not respond to changes in photoperiod and reproduce continuously by parthenogenesis.The molecular or hormonal events that trigger the scasonal response(i.c,induction of the sexual phenotypes)are still unknown.Although circadian synthesis of melatonin is known to play a key role in vertebrate photoperiodism,the involvement of the circadian clock and/or of the hor-mone melatonin in insect seasonal responses is not so well established.Here we show that melatonin levels in the aphid Acyrthosiphon pisum are significantly higher in holocyclice aphids reared under short days than under long days,while no differences were found between anholoeyelic aphids under the same conditions.We also found that melatonin is localized in the aphid suboesophageal ganglion(SOG)and in the thoracic ganglionic mass(TGM).In analogy to vertcbrates,insect-type arylalkxylamine N-acetyltransferases(i-AANATs)are thought to play a key role in melatonin synthesis.We measured the expression of four I-AANAT genes identified in A.pisum and localized two of them in situ in the insect central nervous systems(CNS).Levels of expression of these genes were compatible with the quantities of melatonin observed.Moreover,like melatonin,expression of these genes was found in the SOG and the TGM.  相似文献   
8.
Colo GP  Rosato RR  Grant S  Costas MA 《FEBS letters》2007,581(26):5075-5081
The nuclear receptor coactivator RAC3 plays important roles in many biological processes and tumorigenesis. We found that RAC3 is over-expressed in human chronic myeloid leukemia cells K562, which are normally resistant to TRAIL-induced apoptosis. RAC3 down-regulation by siRNA rendered these cells sensitive to TRAIL-induced cell death. In addition to the up-regulation of TRAIL receptors, the process involves Bid, caspases and PARP activation, loss of mitochondrial membrane potential, and release of AIF, cytochrome c and Smac/DIABLO to the cytoplasm. We conclude that RAC3 is required for TRAIL resistance and that this anti-apoptotic function is independent of its role in hormone receptor signaling.  相似文献   
9.
ATP7A is a P-type ATPase involved in copper(I) homeostasis in humans. It possesses a long N-terminal cytosolic tail containing six domains that are individually folded and capable of binding one copper(I) ion each. We investigated the entire N-terminal tail (MNK1-6) in solution by NMR spectroscopy and addressed its interaction with copper(I) and with copper(I)-HAH1, the physiological partner of ATP7A. At copper(I)-HAH1:MNK1-6 ratios of up to 3:1, thus encompassing the range of protein ratios in vivo, both the first and fourth domain of the tail formed a metal-mediated adduct with HAH1 whereas the sixth domain was simultaneously able to partly remove copper(I) from HAH1. These processes are not dependent on one another. In particular, formation of the adducts is not necessary for copper(I) transfer from HAH1 to the sixth domain. The present data, together with available in vivo studies, suggest that the localization of ATP7A between the trans-Golgi network and the plasma membrane may be regulated by the accumulation of the adducts with HAH1, whereas the main role of domains 5 and 6 is to assist copper(I) translocation.  相似文献   
10.
Sco proteins are widespread proteins found in eukaryotic as well as in many prokaryotic organisms. The 3D structure of representatives from human, yeast, and Bacillus subtilis has been determined, showing a thioredoxin-like fold. Sco proteins have been implicated mainly as copper transporters involved in the assembly of the CuA cofactor in cytochrome c oxidase. Some mutations have been identified in humans that lead to defective cytochrome c oxidase formation and thus to fatal illnesses. However, it appears that the physiological function of Sco proteins goes beyond assembly of the CuA cofactor. Extensive analysis of completely sequenced prokaryotic genomes reveals that 18% of them contain either Sco proteins but not CuA-containing proteins or vice versa. In addition, in several cases, multiple Sco-encoding genes occur even if only a single potential Sco target is encoded in the genome. Genomic context analysis indeed points to a more general role for Sco proteins in copper transport, also to copper enzymes lacking a CuA cofactor. To obtain further insight into the possible role of Sco in the assembly of other cofactors, a search for Cox11 proteins, which are important for CuB biosynthesis, was also performed. A general framework for the action of Sco proteins is proposed, based on the hypothesis that they can couple metal transport and thiol/disulfide-based oxidoreductase activity, as well as select between either of these two cellular functions. This model reconciles the variety of experimental observations made on these proteins over the years, and can constitute a basis for further studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号