首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   8篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1992年   1篇
  1989年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   3篇
  1967年   1篇
  1966年   2篇
  1965年   2篇
  1957年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
Plant Molecular Biology - The first biochemical characterization of a chloroplastic disaggregase is reported (Arabidopsis thaliana ClpB3). ClpB3 oligomerizes into active hexamers that resolubilize...  相似文献   
2.
[NiFe]-hydrogenases require a set of complementary and regulatory proteins for correct folding and maturation processes. One of the essential regulatory proteins, HypF (82kDa) contains a N-terminal acylphosphatase (ACT)-like domain, a sequence motif shared with enzymes catalyzing O-carbamoylation, and two zinc finger motifs similar to those found in the DnaJ chaperone. The HypF acylphosphatase domain is thought to support the conversion of carbamoylphosphate into CO and CN(-), promoting coordination of these ligands to the hydrogenase metal cluster. It has been shown recently that the HypF N-terminal domain can aggregate in vitro to yield fibrils matching those formed by proteins linked to amyloid diseases. The 1.27A resolution HypF acylphosphatase domain crystal structure (residues 1-91; R-factor 13.1%) shows a domain fold of betaalphabetabetaalphabeta topology, as observed in mammalian acylphosphatases specifically catalyzing the hydrolysis of the carboxyl-phosphate bonds in acylphosphates. The HypF N-terminal domain can be assigned to the ferredoxin structural superfamily, to which RNA-binding domains of small nuclear ribonucleoproteins and some metallochaperone proteins belong. Additionally, the HypF N-terminal domain displays an intriguing structural relationship to the recently discovered ACT domains. The structures of different HypF acylphosphatase domain complexes show a phosphate binding cradle comparable to the P-loop observed in unrelated phosphatase families. On the basis of the catalytic mechanism proposed for acylphosphatases, whereby residues Arg23 and Asn41 would support substrate orientation and the nucleophilic attack of a water molecule on the phosphate group, fine structural features of the HypF N-terminal domain putative active site region may account for the lack of acylphosphatase activity observed for the expressed domain. The crystallographic analyses here reported were undertaken to shed light on the molecular bases of inactivity, folding, misfolding and aggregation of the HypF N-terminal acylphosphatase domain.  相似文献   
3.
GDP-4-keto-6-deoxy-d-mannose epimerase/reductase is a bifunctional enzyme responsible for the last step in the biosynthesis of GDP-l-fucose, the substrate of fucosyl transferases. Several cell-surface antigens, including the leukocyte Lewis system and cell-surface antigens in pathogenic bacteria, depend on the availability of GDP-l-fucose for their expression. Therefore, the enzyme is a potential target for therapy in pathological states depending on selectin-mediated cell-to-cell interactions. Previous crystallographic investigations have shown that GDP-4-keto-6-deoxy-d-mannose epimerase/reductase belongs to the short-chain dehydrogenase/reductase protein homology family. The enzyme active-site region is at the interface of an N-terminal NADPH-binding domain and a C-terminal domain, held to bind the substrate. The design, expression and functional characterization of seven site-specific mutant forms of GDP-4-keto-6-deoxy-d-mannose epimerase/reductase are reported here. In parallel, the crystal structures of the native holoenzyme and of three mutants (Ser107Ala, Tyr136Glu and Lys140Arg) have been investigated and refined at 1. 45-1.60 A resolution, based on synchrotron data (R-factors range between 12.6 % and 13.9 %). The refined protein models show that besides the active-site residues Ser107, Tyr136 and Lys140, whose mutations impair the overall enzymatic activity and may affect the coenzyme binding mode, side-chains capable of proton exchange, located around the expected substrate (GDP-4-keto-6-deoxy-d-mannose) binding pocket, are selectively required during the epimerization and reduction steps. Among these, Cys109 and His179 may play a primary role in proton exchange between the enzyme and the epimerization catalytic intermediates. Finally, the additional role of mutated active-site residues involved in substrate recognition and in enzyme stability has been analyzed.  相似文献   
4.
5.
Leg movements of stick insects (Carausius morosus) making turns towards visual targets are examined in detail, and a dynamic model of this behaviour is proposed. Initial results suggest that front legs shape most of the body trajectory, while the middle and hind legs just follow external forces (Rosano H, Webb B, in The control of turning in real and simulated stick insects, vol. 4095, pp 145–156, 2006). However, some limitations of this explanation and dissimilarities in the turning behaviour of the insect and the model were found. A second set of behavioural experiments was made by blocking front tarsi to further investigate the active role of the other legs for the control of turning. The results indicate that it is necessary to have different roles for each pair of legs to replicate insect behaviour. We demonstrate that the rear legs actively rotate the body while the middle legs move sideways tangentially to the hind inner leg. Furthermore, we show that on average the middle inner and hind outer leg contribute to turning while the middle outer leg and hind inner leg oppose body rotation. These behavioural results are incorporated into a 3D dynamic robot simulation. We show that the simulation can now replicate more precisely the turns made by the stick insect. This work was supported by CONACYT México and the European Commission under project FP6-2003-IST2-004690 SPARK.  相似文献   
6.

Background

Metabolic syndrome is a cluster of common cardiovascular risk factors that includes hypertension and insulin resistance. Hypertension and diabetes mellitus are frequent comorbidities and, like metabolic syndrome, increase the risk of cardiovascular events. Telmisartan, an antihypertensive agent with evidence of partial peroxisome proliferator-activated receptor activity-gamma (PPARγ) activity, may improve insulin sensitivity and lipid profile in patients with metabolic syndrome.

Methods

In a double-blind, parallel-group, randomized study, patients with World Health Organization criteria for metabolic syndrome received once-daily doses of telmisartan (80 mg, n = 20) or losartan (50 mg, n = 20) for 3 months. At baseline and end of treatment, fasting and postprandial plasma glucose, insulin sensitivity, glycosylated haemoglobin (HBA1c) and 24-hour mean systolic and diastolic blood pressures were determined.

Results

Telmisartan, but not losartan, significantly (p < 0.05) reduced free plasma glucose, free plasma insulin, homeostasis model assessment of insulin resistance and HbAic. Following treatment, plasma glucose and insulin were reduced during the oral glucose tolerance test by telmisartan, but not by losartan. Telmisartan also significantly reduced 24-hour mean systolic blood pressure (p < 0.05) and diastolic blood pressure (p < 0.05) compared with losartan.

Conclusion

As well as providing superior 24-hour blood pressure control, telmisartan, unlike losartan, displayed insulin-sensitizing activity, which may be explained by its partial PPARγ activity.  相似文献   
7.
Much information has appeared in the last few years on the low resolution structure of amyloid fibrils and on their non-fibrillar precursors formed by a number of proteins and peptides associated with amyloid diseases. The fine structure and the dynamics of the process leading misfolded molecules to aggregate into amyloid assemblies are far from being fully understood. Evidence has been provided in the last five years that protein aggregation and aggregate toxicity are rather generic processes, possibly affecting all polypeptide chains under suitable experimental conditions. This evidence extends the number of model proteins one can investigate to assess the molecular bases and general features of protein aggregation and aggregate toxicity. We have used tapping mode atomic force microscopy to investigate the morphological features of the pre-fibrillar aggregates and of the mature fibrils produced by the aggregation of the hydrogenase maturation factor HypF N-terminal domain (HypF-N), a protein not associated to any amyloid disease. We have also studied the aggregate-induced permeabilization of liposomes by fluorescence techniques. Our results show that HypF-N aggregation follows a hierarchical path whereby initial globules assemble into crescents; these generate large rings, which evolve into ribbons, further organizing into differently supercoiled fibrils. The early pre-fibrillar aggregates were shown to be able to permeabilize synthetic phospholipid membranes, thus showing that this disease-unrelated protein displays the same amyloidogenic behaviour found for the aggregates of most pathological proteins and peptides. These data complement previously reported findings, and support the idea that protein aggregation, aggregate structure and toxicity are generic properties of polypeptide chains.  相似文献   
8.
beta2-Microglobulin (beta2m) is the non-covalently bound light chain of the human class I major histocompatibility complex (MHC-I). The natural turnover of MHC-I gives rise to the release of beta2m into plasmatic fluids and to its catabolism in the kidney. beta2m dissociation from the heavy chain of the complex is a severe complication in patients receiving prolonged hemodialysis. As a consequence of renal failure, the increasing beta2m concentrations can lead to deposition of the protein as amyloid fibrils. Here we characterize the His31-->Tyr human beta2m mutant, a non-natural form of beta2m that is more stable than the wild-type protein, displaying a ten-fold acceleration of the slow phase of folding. We report the 2.9A resolution crystal structure and the NMR characterization of the mutant beta2m, focussing on selected structural features and on the molecular packing observed in the crystals. Juxtaposition of the four mutant beta2m molecules contained in the crystal asymmetric unit, and specific hydrogen bonds, stabilize a compact protein assembly. Conformational heterogeneity of the four independent molecules, some of their mutual interactions and partial unpairing of the N-terminal beta-strand in one protomer are in keeping with the amyloidogenic properties displayed by the mutant beta2m.  相似文献   
9.
Sandhoff disease (SD) is a lysosomal disorder caused by mutations in the HEXB gene. To date, 43 mutations of HEXB have been described, including 3 large deletions. Here, we have characterized 14 unrelated SD patients and developed a Multiplex Ligation-dependent Probe Amplification (MLPA) assay to investigate the presence of large HEXB deletions. Overall, we identified 16 alleles, 9 of which were novel, including 4 sequence variation leading to aminoacid changes [c.626C>T (p.T209I), c.634C>A (p.H212N), c.926G>T (p.C309F), c.1451G>A (p.G484E)] 3 intronic mutations (c.1082+5G>A, c.1242+1G>A, c.1169+5G>A), 1 nonsense mutation c.146C>A (p.S49X) and 1 small in-frame deletion c.1260_1265delAGTTGA (p.V421_E422del). Using the new MLPA assay, 2 previously described deletions were identified. In vitro expression studies showed that proteins bearing aminoacid changes p.T209I and p.G484E presented a very low or absent activity, while proteins bearing the p.H212N and p.C309F changes retained a significant residual activity. The detrimental effect of the 3 novel intronic mutations on the HEXB mRNA processing was demonstrated using a minigene assay. Unprecedentedly, minigene studies revealed the presence of a novel alternative spliced HEXB mRNA variant also present in normal cells. In conclusion, we provided new insights into the molecular basis of SD and validated an MLPA assay for detecting large HEXB deletions.  相似文献   
10.
The interpretation of solution hydrodynamic data in terms of macromolecular structural parameters is not a straightforward task. Over the years, several approaches have been developed to cope with this problem, the most widely used being bead modeling in various flavors. We report here the implementation of the SOMO (SOlution MOdeller; Rai et al. in Structure 13:723–734, 2005) bead modeling suite within one of the most widely used analytical ultracentrifugation data analysis software packages, UltraScan (Demeler in Modern analytical ultracentrifugation: techniques and methods, Royal Society of Chemistry, UK, 2005). The US-SOMO version is now under complete graphical interface control, and has been freed from several constraints present in the original implementation. In the direct beads-per-atoms method, virtually any kind of residue as defined in the Protein Data Bank (e.g., proteins, nucleic acids, carbohydrates, prosthetic groups, detergents, etc.) can be now represented with beads whose number, size and position are all defined in user-editable tables. For large structures, a cubic grid method based on the original AtoB program (Byron in Biophys J 72:408–415, 1997) can be applied either directly on the atomic structure, or on a previously generated bead model. The hydrodynamic parameters are then computed in the rigid-body approximation. An extensive set of tests was conducted to further validate the method, and the results are presented here. Owing to its accuracy, speed, and versatility, US-SOMO should allow to fully take advantage of the potential of solution hydrodynamics as a complement to higher resolution techniques in biomacromolecular modeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号