首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7916篇
  免费   567篇
  国内免费   1篇
  2023年   27篇
  2022年   90篇
  2021年   178篇
  2020年   125篇
  2019年   192篇
  2018年   227篇
  2017年   204篇
  2016年   308篇
  2015年   366篇
  2014年   478篇
  2013年   563篇
  2012年   612篇
  2011年   576篇
  2010年   375篇
  2009年   298篇
  2008年   441篇
  2007年   422篇
  2006年   358篇
  2005年   365篇
  2004年   365篇
  2003年   318篇
  2002年   275篇
  2001年   141篇
  2000年   117篇
  1999年   93篇
  1998年   65篇
  1997年   45篇
  1996年   70篇
  1995年   39篇
  1994年   40篇
  1993年   41篇
  1992年   63篇
  1991年   61篇
  1990年   48篇
  1989年   41篇
  1988年   41篇
  1987年   33篇
  1986年   31篇
  1985年   34篇
  1984年   20篇
  1983年   33篇
  1982年   29篇
  1981年   25篇
  1980年   23篇
  1979年   18篇
  1977年   19篇
  1976年   16篇
  1975年   20篇
  1974年   18篇
  1972年   15篇
排序方式: 共有8484条查询结果,搜索用时 31 毫秒
1.
2.
3.
Natural killer T (NKT) cells are a component of innate and adaptive immune systems implicated in immune, autoimmune responses and in the control of obesity and cancer. NKT cells develop from common CD4+ CD8+ double positive (DP) thymocyte precursors after the rearrangement and expression of T cell receptor (TCR) Vα14-Jα18 gene. Temporal regulation and late appearance of Vα14-Jα18 rearrangement in immature DP thymocytes has been demonstrated. However, the precise control of lifetime of DP thymocytes in vivo that enables distal rearrangements remains incompletely defined. Here we demonstrate that T cell factor (TCF)-1, encoded by the Tcf7 gene, is critical for the extended lifetime of DP thymocytes. TCF-1-deficient DP thymocytes fail to undergo TCR Vα14-Jα18 rearrangement and produce significantly fewer NKT cells. Ectopic expression of Bcl-xL permits Vα14-Jα18 rearrangement and rescues NKT cell development. We report that TCF-1 regulates expression of RORγt, which regulates DP thymocyte survival by controlling expression of Bcl-xL. We posit that TCF-1 along with its cofactors controls the lifetime of DP thymocytes in vivo.  相似文献   
4.
The study of the structural and functional properties of key components of polar marine ecosystems has received increased attention in order to better understand the ecological consequences of future sea temperature rise and seasonal ice retraction. Owing to this purpose, during the ATOS-Arctic cruise, held in July 2007 in the framework of the 2007–2008 International Polar Year, we studied the respiratory carbon demand of mesozooplankton as well as their contribution to the regeneration of inorganic nitrogen and phosphorus (NH4-N and PO4-P) via excretion. The studied area comprised several stations along a latitudinal gradient in the East Greenland current, plus a network of stations NW of the Svalbard islands. The specific respiratory carbon losses and phosphorus (PO4-P) excretion rates were similar or slightly higher than some reports for Arctic mesozooplankton, but the nitrogen (NH4-N) excretion rates were higher by a factor of 3 when compared with previous data sets. The mesozooplankton respiratory losses were equivalent to 23% of primary production, and at turn zooplankton contributed by excretion to more than 50% of the N and P required by phytoplankton. Although C:N, C:P and N:P metabolic atomic quotients almost coincided with the average Redfield’s stoichiometric ratios, the low C:N values when compared to previous reports suggested a predominance of protein-related metabolic substrates. The potential consequences of changes observed in the C:N, N:P and C:P metabolic ratios of mesozooplankton for Arctic marine ecosystems are discussed.  相似文献   
5.
  1. Animal behavior is elicited, in part, in response to external conditions, but understanding how animals perceive the environment and make the decisions that bring about these behavioral responses is challenging.
  2. Animal heads often move during specific behaviors and, additionally, typically have sensory systems (notably vision, smell, and hearing) sampling in defined arcs (normally to the front of their heads). As such, head‐mounted electronic sensors consisting of accelerometers and magnetometers, which can be used to determine the movement and directionality of animal heads (where head “movement” is defined here as changes in heading [azimuth] and/or pitch [elevation angle]), can potentially provide information both on behaviors in general and also clarify which parts of the environment the animals might be prioritizing (“environmental framing”).
  3. We propose a new approach to visualize the data of such head‐mounted tags that combines the instantaneous outputs of head heading and pitch in a single intuitive spherical plot. This sphere has magnetic heading denoted by “longitude” position and head pitch by “latitude” on this “orientation sphere” (O‐sphere).
  4. We construct the O‐sphere for the head rotations of a number of vertebrates with contrasting body shape and ecology (oryx, sheep, tortoises, and turtles), illustrating various behaviors, including foraging, walking, and environmental scanning. We also propose correcting head orientations for body orientations to highlight specific heading‐independent head rotation, and propose the derivation of O‐sphere‐metrics, such as angular speed across the sphere. This should help identify the functions of various head behaviors.
  5. Visualizations of the O‐sphere provide an intuitive representation of animal behavior manifest via head orientation and rotation. This has ramifications for quantifying and understanding behaviors ranging from navigation through vigilance to feeding and, when used in tandem with body movement, should provide an important link between perception of the environment and response to it in free‐ranging animals.
  相似文献   
6.
Summary FABPs in the various tissues play an important role in the intracellular fatty acid transport and metabolism. Reye's syndrome (RS) and multisystemic lipid storage (MLS) are human disorders characterized by a disturbance of lipid metabolism of unknown etiology. We investigated for the first time L-FABP in these two conditions. Affinity purified antibodies against chicken L-FABP were raised in rabbits, and found to cross-react specifically with partially purified human L-FABP. L-FABP content in liver samples of two patients with RS and MLS was investigated by immuno-histochemistry, SDS-PAGE and ELISA. L-FABP immuno-histochemistry showed increased reactivity in the liver of RS patient and normal reactivity in MLS liver. L-FABP increase in RS liver was confirmed by densitometry of SDS-PAGE and ELISA method. By these two methods the increase amounted to 180% and 199% (p < 0.02), respectively, as compared to controls. A possible role of L-FABP in the pathogenesis of RS is discussed.  相似文献   
7.
Blue Dextran has been coupled covalently to Sepharose-4B to purify the enzymatic complex NAD(P)H-nitrate reductase (EC 1.6.6.2) from the green alga Ankistrodesmus braunii by affinity chromatography. The optimum conditions for the accomplishment of the chromatographic process have been determined. The adsorption of nitrate reductase on Blue Dextran Sepharose is optimum when a phosphate buffer of low ionic strength and pH 6.5-7.0 is used. Once the enzyme has been bound to Blue Dextran Sepharose, it can be specifically eluted by addition of NADH and FAD to the washing buffer. However, none of the nucleotides added separately is able to promote the elution of the enzyme from the column. The elution can be also achieved, but not specifically, by increasing the ionic strength of the buffer with KCl. These results have made possible a procedure for the purification of A. braunii nitrate reductase which led to electrophoretic homogeneity, with an overall yield of 70% and a specific activity of 49 units/mg of protein.  相似文献   
8.
9.
10.

Background  

Anthropogenic habitat modifications have led to the extinction of many species and have favoured the expansion of others. Nonetheless, the possible role of humans as a diversifying force in vertebrate evolution has rarely been considered, especially for species with long generation times. We examine the influence that humans have had on the colonization and phenotypic and genetic differentiation of an insular population of a long-lived raptor species, the Egyptian vulture (Neophron percnopterus).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号