首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有32条查询结果,搜索用时 171 毫秒
1.
Hexose-6-phosphate dehydrogenase (refers to hexose-6-phosphate dehydrogenase from any species in general) has been purified to apparent homogeneity from the teleost fish Fundulus heteroclitus. The enzyme was characterized for native (210 kDa) and subunit molecular mass (54 kDa), isoelectric point (6.65), amino acid composition, substrate specificity, and metal dependence. Glucose 6-phosphate, galactose 6-phosphate, 2-deoxyglucose 6-phosphate, glucose 6-sulfate, glucosamine 6-phosphate, and glucose were found to be substrates in the reaction with NADP+, but only glucose was a substrate when NAD+ was used as coenzyme. A unique reaction mechanism for the forward direction was found for this enzyme when glucose 6-phosphate and NADP+ were used as substrates; ordered with glucose 6-phosphate binding first. NAD+ was found to be a competitive inhibitor toward NADP+ and an uncompetitive inhibitor with regard to glucose 6-phosphate in this reaction; Vmax = 7.56 mumol/min/mg, Km(NADP+) = 1.62 microM, Km(glucose 6-phosphate) = 7.29 microM, Kia(glucose 6-phosphate) = 8.66 microM, and Ki(NAD+) = 0.49 microM. The use of alternative substrates confirmed this result. This type of reaction mechanism has not been previously reported for a dehydrogenase.  相似文献   
2.
3.
Burns LL  Ropson IJ 《Proteins》2001,43(3):292-302
The folding mechanisms of cellular retinol binding protein II (CRBP II), cellular retinoic acid binding protein I (CRABP I), and cellular retinoic acid binding protein II (CRABP II) were examined. These beta-sheet proteins have very similar structures and higher sequence homologies than most proteins in this diverse family. They have similar stabilities and show completely reversible folding at equilibrium with urea as a denaturant. The unfolding kinetics of these proteins were monitored during folding and unfolding by circular dichroism (CD) and fluorescence. During unfolding, CRABP II showed no intermediates, CRABP I had an intermediate with nativelike secondary structure, and CRBP II had an intermediate that lacked secondary structure. The refolding kinetics of these proteins were more similar. Each protein showed a burst-phase change in intensity by both CD and fluorescence, followed by a single observed phase by both CD and fluorescence and one or two additional refolding phases by fluorescence. The fluorescence spectral properties of the intermediate states were similar and suggested a gradual increase in the amount of native tertiary structure present for each step in a sequential path. However, the rates of folding differed by as much as 3 orders of magnitude and were slower than those expected from the contact order and topology of these proteins. As such, proteins with the same final structure may not follow the same route to the native state.  相似文献   
4.
Pastukhov AV  Ropson IJ 《Proteins》2003,53(3):607-615
We studied the equilibrium binding of two hydrophobic fluorescent dyes, ANS and bisANS, to four members of a family of intracellular lipid-binding proteins: IFABP, CRABP I, CRABP II, and ILBP. The spectral and binding parameters for the probes bound to the proteins were determined. Typically, there was a single binding site on each protein for the ligands. However, IFABP cooperatively bound a second bisANS molecule in the binding pocket. Comparative analysis of affinities and spectral characteristics for the two probes allowed us to examine the contributions of electrostatic and hydrophobic interactions to the binding process, and to address some aspects of the internal structure of the studied proteins.  相似文献   
5.
Geographic variation in the gene frequencies corresponding to 15 polymorphic enzymes were studied in the common killifish Fundulus heteroclitus. Aat-A, Est-B, Fum-A, H6pdh-A, Mpi-A and Pgm-B showed clinal variation in allelic frequencies along the Atlantic coast of North America, while Aat-B, Ap-A, and the EST-C phenotypes did not. The clinal allelic variation of six previously examined loci (Ldh-B, Mdh-A, Gpi-B, Idh-A, Pgm-A, and 6-Pgdh-A) was extended to locations farther north. Gene diversity was lowest in the cold waters of northern latitudes and highest in the warmer waters of southern latitudes. The variety of clinal shapes and widths suggests that selection has affected the allelic distributions for at least some of these loci. This hypothesis is discussed with regard to the range contractions and extensions caused by the glacial advances and retreats during the Pleistocene.  相似文献   
6.
Purification and characterization of Dolichos lablab lectin   总被引:1,自引:0,他引:1  
Mo  H; Meah  Y; Moore  JG; Goldstein  IJ 《Glycobiology》1999,9(2):173-179
The mannose/glucose-binding Dolichos lablab lectin (designated DLL) has been purified from seeds of Dolichos lablab (hyacinth bean) to electrophoretic homogeneity by affinity chromatography on an ovalbumin- Sepharose 4B column. The purified lectin gave a single symmetric protein peak with an apparent molecular mass of 67 kDa on gel filtration chromatography, and five bands ranging from 10 kDa to 22 kDa upon SDS-PAGE. N-Terminal sequence analysis of these bands revealed subunit heterogeneity due to posttranslational proteolytic truncation at different sites mostly at the carboxyl terminus. The carbohydrate binding properties of the purified lectin were investigated by three different approaches: hemagglutination inhibition assay, quantitative precipitation inhibition assay, and ELISA. On the basis of these studies, it is concluded that the Dolichos lablab lectin has neither an extended carbohydrate combining site, nor a hydrophobic binding site adjacent to it. The carbohydrate combining site of DLL appears to most effectively accommodate a nonreducing terminal alpha-d-mannosyl unit, and to be complementary to the C-3, C-4, and C-6 equatorial hydroxyl groups of alpha-d-mannopyranosyl and alpha-d-glucopyranosyl residues. DLL strongly precipitates murine IgM but not IgG, and the recent finding that this lectin interacts specifically with NIH 3T3 fibroblasts transfected with the Flt3 tyrosine kinase receptor and preserves human cord blood stem cells and progenitors in a quiescent state for prolonged periods in culture, make this lectin a valuable tool in biomedical research.   相似文献   
7.
不同胁迫预处理提高水稻幼苗抗寒性期间蛋白质的变化   总被引:13,自引:0,他引:13  
水稻(Oryza sativa L.)幼苗经盐、热激和冷三种不同胁迫预处理均提高了幼苗的抗寒性。与未预处理苗相比,在处理后、低温伤害后和常温下恢复2d的三个时期,不同胁迫预处理苗的可溶性和热不稳定蛋白含量变化趋势甚为相似,但热稳定蛋白含量变化则各有异同。SDS-PAGE图谱分析显示,不同胁迫预处理提高水稻幼苗抗寒性时,其可溶性蛋白、热稳定和热不稳定蛋白组成变化亦各有异同。除诱导出共有的新多肽外,还各自诱导出特有的新多肽。结果表明,植物对不同胁迫的交叉适应存在一定的共同机理,但亦可看出植物对同一种环境胁迫似乎不是以同一的机理去适应。  相似文献   
8.
9.
Yeh SR  Ropson IJ  Rousseau DL 《Biochemistry》2001,40(14):4205-4210
Intestinal fatty acid binding protein (IFABP) is a member of the lipid binding protein family, members of which have a clam shell type of motif formed by two five-stranded beta-sheets. Understanding the folding mechanism of these proteins has been hindered by the presence of an unresolved burst phase. By initiating the reaction with a sub-millisecond mixer and following its progression by Trp fluorescence, we discovered three distinct phases in the folding reaction of the W6Y mutant of IFABP from which we postulate the following sequence of events. The first phase (k(1) > 10 000 s(-1)) involves collapse of the polypeptide chain around a hydrophobic core. During the second phase (k(2) approximately 1500 s(-1)), beta-strands B-G, mostly located on the top half of the clam shell structure, propagate from this hydrophobic core. It is followed by the final phase (k(3) approximately 5 s(-1)) involving the formation of the last three beta-strands on the bottom half of the clam shell and the establishment of the native hydrogen bonding network throughout the protein molecule.  相似文献   
10.
The folding mechanisms of two proteins in the family of intracellular lipid binding proteins, ileal lipid binding protein (ILBP) and intestinal fatty acid binding protein (IFABP), were examined. The structures of these all-beta-proteins are very similar, with 123 of the 127 amino acids of ILBP having backbone and C(beta) conformations nearly identical to those of 123 of the 131 residues of IFABP. Despite this structural similarity, the sequences of these proteins have diverged, with 23% sequence identity and an additional 16% sequence similarity. The folding process was completely reversible, and no significant concentrations of intermediates were observed by circular dichroism or fluorescence at equilibrium for either protein. ILBP was less stable than IFABP with a midpoint of 2. 9 M urea compared to 4.0 M urea for IFABP. Stopped-flow kinetic studies showed that both the folding and unfolding of these proteins were not monophasic, suggesting that either multiple paths or intermediate states were present during these processes. Proline isomerization is unlikely to be the cause of the multiphasic kinetics. ILBP had an intermediate state with molten globule-like spectral properties, whereas IFABP had an intermediate state with little if any secondary structure during folding and unfolding. Double-jump experiments showed that these intermediates appear to be on the folding path for each protein. The folding mechanisms of these proteins were markedly different, suggesting that the different sequences of these two proteins dictate different paths through the folding landscape to the same final structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号