首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   8篇
  2011年   1篇
  2009年   1篇
  2008年   7篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1967年   2篇
  1964年   2篇
  1961年   1篇
排序方式: 共有64条查询结果,搜索用时 31 毫秒
1.
2.
The TGF-b superfamily cytokine MIC-1/GDF15 circulates in all humans and when overproduced in cancer leads to anorexia/cachexia, by direct action on brain feeding centres. In these studies we have examined the role of physiologically relevant levels of MIC-1/GDF15 in the regulation of appetite, body weight and basal metabolic rate. MIC-1/GDF15 gene knockout mice (MIC-1−/−) weighed more and had increased adiposity, which was associated with increased spontaneous food intake. Female MIC-1−/− mice exhibited some additional alterations in reduced basal energy expenditure and physical activity, possibly owing to the associated decrease in total lean mass. Further, infusion of human recombinant MIC-1/GDF15 sufficient to raise serum levels in MIC-1−/− mice to within the normal human range reduced body weight and food intake. Taken together, our findings suggest that MIC-1/GDF15 is involved in the physiological regulation of appetite and energy storage.  相似文献   
3.
Moorella thermoacetica is one of the model acetogenic bacteria for the resolution of the Wood–Ljungdahl (acetyl-CoA) pathway in which CO2 is autotrophically assimilated yielding acetyl-CoA as central intermediate. Its further conversion into acetate relies on subsequent phosphotransacetylase (PTA) and acetate kinase reactions. However, the genome of M. thermoacetica contains no pta homologous gene. It has been speculated that the moth_0864 and moth_1181 gene products sharing similarities with an evolutionarily distinct phosphotransacylase involved in 1,2-propanediol utilization (PDUL) of Salmonella enterica act as PTAs in M. thermoacetica. Here, we demonstrate specific PTA activities with acetyl-CoA as substrate of 9.05 and 2.03 U/mg for the recombinant enzymes PDUL1 (Moth_1181) and PDUL2 (Moth_0864), respectively. Both showed maximal activity at 65 °C and pH 7.6. Native proteins (90 kDa) are homotetramers composed of four subunits with apparent molecular masses of about 23 kDa. Thus, one or both PDULs of M. thermoacetica might act as PTAs in vivo catalyzing the penultimate step of the Wood–Ljungdahl pathway toward the formation of acetate. In silico analysis underlined that up to now beside of M. thermoacetica, only Sporomusa ovata contains only PDUL like classIII-PTAs but no other phosphotransacetylases or phosphotransbutyrylases (PTBs).  相似文献   
4.
Genetic, environmental, and pharmacological interventions into the aging process can confer resistance to multiple age‐related diseases in laboratory animals, including rhesus monkeys. These findings imply that individual mechanisms of aging might contribute to the co‐occurrence of age‐related diseases in humans and could be targeted to prevent these conditions simultaneously. To address this question, we text mined 917,645 literature abstracts followed by manual curation and found strong, non‐random associations between age‐related diseases and aging mechanisms in humans, confirmed by gene set enrichment analysis of GWAS data. Integration of these associations with clinical data from 3.01 million patients showed that age‐related diseases associated with each of five aging mechanisms were more likely than chance to be present together in patients. Genetic evidence revealed that innate and adaptive immunity, the intrinsic apoptotic signaling pathway and activity of the ERK1/2 pathway were associated with multiple aging mechanisms and diverse age‐related diseases. Mechanisms of aging hence contribute both together and individually to age‐related disease co‐occurrence in humans and could potentially be targeted accordingly to prevent multimorbidity.  相似文献   
5.
A segment of inositol 1,4,5-trisphosphate 3-kinase responsible for inositol 1,4,5-trisphosphate (InsP(3)) binding was characterized and confirmed by three different approaches employing the fully active expressed catalytic domain of the enzyme. Part of this moiety was protected from limited tryptic proteolysis by InsP(3). Sequencing of two fragments of 16 and 21 kDa, generated in the absence or presence of InsP(3), respectively, identified segment Glu-271 to Arg-305 as being protected. 15 monoclonal antibodies, all binding to epitopes within this region, inhibited enzyme activity and interfered with inositol phosphate binding. Detailed enzyme kinetic parameters of 32 site-directed mutants revealed residues Arg-276 and Lys-303 in this segment and Arg-322, located nearby, as directly involved in and five other closely neighbored residues, all located within a segment of 73 amino acids, as also influencing InsP(3) binding. Part of this region is similar in sequence to an InsP(3) binding segment in InsP(3) receptors. Combined with the finding that mutants influencing only ATP binding all lie outside this region, these data indicate that an InsP(3) binding core domain is inserted between two segments acting together in ATP binding and phosphate transfer.  相似文献   
6.
For many pathogenic bacteria like Pseudomonas aeruginosa heme is an essential source of iron. After uptake, the heme molecule is degraded by heme oxygenases to yield iron, carbon monoxide, and biliverdin. The heme oxygenase PigA is only induced under iron-limiting conditions and produces the unusual biliverdin isomers IXbeta and IXdelta. The gene for a second putative heme oxygenase in P. aeruginosa, bphO, occurs in an operon with the gene bphP encoding a bacterial phytochrome. Here we provide biochemical evidence that bphO encodes for a second heme oxygenase in P. aeruginosa. HPLC, (1)H, and (13)C NMR studies indicate that BphO is a "classic" heme oxygenase in that it produces biliverdin IXalpha. The data also suggest that the overall fold of BphO is likely to be the same as that reported for other alpha-hydroxylating heme oxygenases. Recombinant BphO was shown to prefer ferredoxins or ascorbate as a source of reducing equivalents in vitro and the rate-limiting step for the oxidation of heme to biliverdin is the release of product. In eukaryotes, the release of biliverdin is driven by biliverdin reductase, the subsequent enzyme in heme catabolism. Because P. aeruginosa lacks a biliverdin reductase homologue, data are presented indicating an involvement of the bacterial phytochrome BphP in biliverdin release from BphO and possibly from PigA.  相似文献   
7.
The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.  相似文献   
8.
This article describes the principles of marker research with prospective studies along with examples for diagnostic tumor markers. A plethora of biomarkers have been claimed as useful for the early detection of cancer. However, disappointingly few biomarkers were approved for the detection of unrecognized disease, and even approved markers may lack a sound validation phase. Prospective studies aimed at the early detection of cancer are costly and long-lasting and therefore the bottleneck in marker research. They enroll a large number of clinically asymptomatic subjects and follow-up on incident cases. As invasive procedures cannot be applied to collect tissue samples from the target organ, biomarkers can only be determined in easily accessible body fluids. Marker levels increase during cancer development, with samples collected closer to the occurrence of symptoms or a clinical diagnosis being more informative than earlier samples. Only prospective designs allow the serial collection of pre-diagnostic samples. Their storage in a biobank upgrades cohort studies to serve for both, marker discovery and validation. Population-based cohort studies, which may collect a wealth of data, are commonly conducted with just one baseline investigation lacking serial samples. However, they can provide valuable information about factors that influence the marker level. Screening programs can be employed to archive serial samples but require significant efforts to collect samples and auxiliary data for marker research. Randomized controlled trials have the highest level of evidence in assessing a biomarker's benefit against usual care and present the most stringent design for the validation of promising markers as well as for the discovery of new markers. In summary, all kinds of prospective studies can benefit from a biobank as they can serve as a platform for biomarker research. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   
9.

Background

Starting from birth, this explorative study aimed to investigate between-country differences in body mass index (BMI) trajectories and whether early life factors explain these differences.

Methods

The sample included 7,644 children from seven European countries (Belgium, Cyprus, Germany, Hungary, Italy, Spain, Sweden) participating in the multi-centre IDEFICS study. Information on early life factors and in total 53,409 repeated measurements of height and weight from 0 to <12 years of age were collected during the baseline (2007/2008) and follow-up examination (2009/2010) supplemented by records of routine child health visits. Country-specific BMI growth curves were estimated using fractional polynomial mixed effects models. Several covariates focussing on early life factors were added to the models to investigate their role in the between-countries differences.

Results

Large between-country differences were observed with Italian children showing significantly higher mean BMI values at all ages ≥ 3 years compared to the other countries. For instance, at age 11 years mean BMI values in Italian boys and girls were 22.3 [21.9;22.8; 99% confidence interval] and 22.0 [21.5;22.4], respectively, compared to a range of 18.4 [18.1;18.8] to 20.3 [19.8;20.7] in boys and 18.2 [17.8;18.6] to 20.3 [19.8;20.7] in girls in the other countries. After adjustment for early life factors, differences between country-specific BMI curves became smaller. Maternal BMI was the factor being most strongly associated with BMI growth (p<0.01 in all countries) with associations increasing during childhood. Gestational weight gain (GWG) was weakly associated with BMI at birth in all countries. In some countries, positive associations between BMI growth and children not being breastfed, mothers’ smoking during pregnancy and low educational level of parents were found.

Conclusion

Early life factors seem to explain only some of the inter-country variation in growth. Maternal BMI showed the strongest association with children’s BMI growth.  相似文献   
10.
Summary The development of the mouse oocyte during the primordial, primary and secondary follicular growth stages was studied by means of the electron microscope.During the early stages of oocyte maturation, mitochondrial multiplication takes place along with an apparent temporary transition from round to oval shape. The internal structure of many of the mitochondria is altered by separation of membranes of a crista to form a vacuole. This enlarges to pear-shaped configurations and gradually it forms so large a structure as to result in compression of adjacent cristae, thereby altering the entire appearance of the organelle.Dense round bodies encapsulated by a single membrane are found in the cytoplasm of oocytes of primary follicles near the periphery. The Golgi complex appears in primary follicle oocytes as an aggregation of vesicles. Gradually the number of lamellae in the complexes increase and these organelles become more peripherally located. The Balbiani yolk nuclei apparently is represented by a conglomeration of Golgi complexes and are present only in primordial and young primary follicle oocytes.The endoplasmic reticulum appears in the early stages only as rough-surfaced vesicles. At later stages individual cisternae become prominent. Apparently, a modified form of E. R. appears during maturation of the secondary follicle oocyte.Multivesicular complexes, each consisting of two components, small vesicles and larger vesicles enclosing microvesicles (multivesicular bodies), were commonly found during all stages of oocyte growth. The secondary follicle oocytes frequently contain multilamellar bodies. These are commonly found in juxtaposition to the multivesicular complexes and also near the egg periphery and occasionally near the nuclear envelope.This investigation was supported by a Public Health Service Research Career Program Award (5-K3-HD-5356-07) from the National Institute of Child Health and Human Development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号