首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16600篇
  免费   1751篇
  国内免费   15篇
  2021年   200篇
  2019年   141篇
  2018年   158篇
  2017年   141篇
  2016年   248篇
  2015年   481篇
  2014年   483篇
  2013年   692篇
  2012年   888篇
  2011年   914篇
  2010年   614篇
  2009年   534篇
  2008年   806篇
  2007年   839篇
  2006年   741篇
  2005年   852篇
  2004年   839篇
  2003年   814篇
  2002年   749篇
  2001年   281篇
  2000年   215篇
  1999年   287篇
  1998年   279篇
  1997年   179篇
  1996年   192篇
  1995年   182篇
  1994年   196篇
  1993年   162篇
  1992年   236篇
  1991年   204篇
  1990年   230篇
  1989年   197篇
  1988年   206篇
  1987年   180篇
  1986年   164篇
  1985年   191篇
  1984年   219篇
  1983年   179篇
  1982年   210篇
  1981年   222篇
  1980年   178篇
  1979年   160篇
  1978年   153篇
  1977年   140篇
  1976年   142篇
  1975年   152篇
  1974年   147篇
  1973年   163篇
  1972年   114篇
  1971年   96篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
An overview of some mechanisms of bacterial pathogenesis   总被引:1,自引:0,他引:1  
The adherence of microorganisms to host surfaces is highly specific, and in many cases, essential for subsequent pathogenetic events to occur. A dynamic process leading to increased mucosal adherence of gram-negative bacilli to epithelial cell receptors in the oral cavity appears to be the initial step in the development of pneumonia. In infectious processes secondary to Streptococcus pneumoniae, adherence may also play a role in specific syndromes. In many cases, however, colonization of oropharyngeal mucus itself, the presence of capsular polysaccharide, and the release of various cell wall components appear to interact to cause clinical disease. In Neisseria gonorrhoeae infections, adherence is all important and is mediated by a number of cell surface structures. These have been studied extensively. Many of these structures, such as pili and protein II, exhibit great variability both between strains and in the same organism at different stages of infection. Others, such as protein I, are more constant. This information has been used in the production of specific vaccines to more preserved structures to inhibit adherence. These will be tested in the near future. It is our view that a better understanding of the many forms of bacterial adherence will be the key to our designing more effective strategies to detect early infection and to intervene more decisively to limit its spread.  相似文献   
2.
3.
A new fern-like fossil plant is described from the lower Upper Devonian of southern Ellesmere Island, Canadian Arctic Archipelago. The plant occurs in an Archaeopteris-dominated flora preserved in the Nordstrand Point Formation (Mid-Late Frasnian) near Bird Fiord. The plant has a pinnate vegetative system with three branch orders and laminate sphenopteroid pinnules. Primary pinnae usually diverge from the main axis in distichous pairs (quadriseriate), but can depart singly (biseriate). Each primary pinna bears a basal catadromic aphlebia. Anatomically, the plant exhibits a mesarch, bipolar protostele that is ribbon- to clepsydropsoid-shaped in the main axis. Primary pinna traces are also initially bipolar and crescent-shaped, but may become four-ribbed before dividing into a pair of bipolar traces. The morphology and anatomy of this plant are nongymnospermous and are most similar to Zygopteridales (particularly Rhacophytaceae and Zygopteridaceae). The Frasnian age of Ellesmeris shows that laminated foliage had evolved in some zygopterid ferns much earlier than previously recognized. The Sphenopteris-like pinnules of Ellesmeris indicate the need for caution when attributing such a convergent foliar design to other plant groups, such as the Devonian gymnosperms.  相似文献   
4.
Patterns of conflict and cooperation both within and between societies may be related to the degree of cultural similarity within and between the same societies. A simple model of social learning is used to predict patterns of conflict and cooperation in hypothetical societies that differ in the roles of relatives and nonrelatives in the enculturation of children. The model is illustrated by comparing its predictions to known differences in the patterns of conflict between males inpatrilocal and matrilocal societies.  相似文献   
5.
6.
7.
Emerging infectious diseases threaten a wide diversity of animals, and important questions remain concerning disease emergence in socially structured populations. We developed a spatially explicit simulation model to investigate whether—and under what conditions—disease-related mortality can impact rates of pathogen spread in populations of polygynous groups. Specifically, we investigated whether pathogen-mediated dispersal (PMD) can occur when females disperse after the resident male dies from disease, thus carrying infections to new groups. We also examined the effects of incubation period and virulence, host mortality and rates of background dispersal, and we used the model to investigate the spread of the virus responsible for Ebola hemorrhagic fever, which currently is devastating African ape populations. Output was analyzed using regression trees, which enable exploration of hierarchical and non-linear relationships. Analyses revealed that the incidence of disease in single-male (polygynous) groups was significantly greater for those groups containing an average of more than six females, while the total number of infected hosts in the population was most sensitive to the number of females per group. Thus, as expected, PMD occurs in polygynous groups and its effects increase as harem size (the number of females) increases. Simulation output further indicated that population-level effects of Ebola are likely to differ among multi-male–multi-female chimpanzees and polygynous gorillas, with larger overall numbers of chimpanzees infected, but more gorilla groups becoming infected due to increased dispersal when the resident male dies. Collectively, our results highlight the importance of social system on the spread of disease in wild mammals.  相似文献   
8.
The potential physiological impact of morphological changes in the active dendritic spines, which are believed to be associated with altered synaptic efficacy, was investigated in a computer simulation study using the NEURON package [1]. A compartmental model of a simplified neuron was built, which included 30 complex spines (neck, head, and active zone) and accommodating AMPA-type synaptic inputs with alpha-function conductances. Hodgkin-Huxley type excitable membranes were inserted into the spine heads. It was shown that arranging spines in dense clusters, as opposed to a uniformly random spine distribution, has a negligible effect on the synaptic signal transfer (other model conditions, including synaptic input and spine density, remained unchanged). However, if a proportion (e.g., 3–20%) of the spines partly fuse with their neighbors forming branched spines, this could increase dramatically the cell response to the unchanged synaptic input. Results of this pilot study provide the basis for a more detailed investigation of the relationship between the spine arrangement and synaptic function, considering dual-component synaptic currents and mechanisms controlling ion fluxes in the dendritic compartments.  相似文献   
9.
10.
The time dependency of the spontaneous aggregation of the fibrillogenic β-Amyloid peptide, Aβ1–40, was measured by turbidity, circular dichroism, HPLC, and fluorescence polarization. The results by all methods were comparable and they were most consistent with a kinetic model where the peptide first slowly forms an activated monomeric derivative (AM), which is the only species able to initiate, by tetramerization, the formation of linear aggregates. The anti-Aβ antibody 6E10, raised against residues 1–17, at concentrations of 200–300 nM delayed significantly the aggregation of 50 μM amyloid peptide. The anti–Aβ antibody 4G8, raised against residues 17–24, was much less active in that respect, while the antibody A162, raised against the C-terminal residues 39–43 of the full-length Aβ was totally inactive at those concentrations. Concomitant with the aggregation experiments, we also measured the time dependency of the Aβ1–40–induced toxicity toward SH-EP1 cells and hippocampal neurons, evaluated by SYTOX Green fluorescence, lactate dehydrogenase release, and activation of caspases. The extent of cell damage measured by all methods reached a maximum at the same time and this maximum coincided with that of the concentration of AM. According to the kinetic scheme, the latter is the only transient peptide species whose concentration passes through a maximum. Thus, it appears that the toxic species of Aβ1–40 is most likely the same transient activated monomer that is responsible for the nucleation of fibril formation. These conclusions should provide a structural basis for understanding the toxicity of Aβ1–40 in vitro and possibly in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号