首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   15篇
  2020年   3篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1991年   1篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
  1969年   2篇
  1967年   1篇
  1940年   2篇
  1905年   3篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
Flushing measurements and a resin cast of a burrow inhabited by Sesarma messa and Alpheus cf macklay were taken from a Rhizophoraspp. forest. The burrow had 9 openings and occupied a swamp surface area of 0.64 m2. Passive irrigation of the burrow was investigated by recording change in conductivity of burrow water in a chamber 45 cm below the swamp surface during tidal inundation of the swamp. The chamber was completely flushed within approximately one hour, i.e. by a single tidal event. Burrow morphology was determined by means of resin casting. The investigated burrow was of discrete structure, with an overall depth of 1.2 m and a total volume of 68 l, i.e. ca. 9% of the volume of swamp soil. The below ground surface area of chambers and tunnels was 3.8 m2. The mean and maximum chamber/tunnel diameter was 7 cm and 11 cm respectively. The soil in the close vicinity of the burrow was extensively penetrated by roots, and any two parts of the burrow were located no further than 20 cm away from each other. By reducing diffusion distances within the soil and by being well flushed, the burrows provide an efficient mechanism for removal of excess salt accumulated in the soil around mangrove roots due to exclusion.  相似文献   
2.
The nature of the conversion of thyroxine (T4) to triiodothyronine (T3) and reverse triiodothyronine (rT3) was investigated in rat liver homogenate and microsomes. A 6-fold rise of T3 and 2.5-fold rise of rT3 levels determined by specific radioimmunoassays was observed over 6 h after the addition of T4. An enzymic process is suggested that converts T4 to T3 and rT3. For T3 the optimal pH is 6 and for rT3, 9.5. The converting activity for both T3 and rT3 is temperature dependent and can be suppressed by heat, H2O2, merthiolate and by 5-propyl-2-thiouracil. rT3 and to a lesser degree iodide, were able to inhibit the production of T3 in a dose related fashion. Therefore the pH dependendy, rT3 and iodide may regulate the availability of T3 or rT3 depending on the metabolic requirements of thyroid hormones.  相似文献   
3.
The Escherichia coli heat-stable enterotoxin (ST) coded for by plasmid pYK007 (Apr ST+) showed a dependence for cyclic adenosine 3',5'-monophosphate (cAMP) to express ST activity in an adenyl cyclase (cya) deletion mutant; no ST activity was detected in the presence of cAMP in a cAMP receptor protein (crp) deletion mutant or in a double deletion mutant (delta cya delta crp). The cya-crp effect on ST activity could not be accounted for by a modification of the copy number of plasmid deoxyribonucleic acid per chromosome equivalent or by an alteration in the secretion of an active intracellular enterotoxin.  相似文献   
4.
RING‐in‐between‐RING (RBR) ubiquitin (Ub) ligases are a distinct class of E3s, defined by a RING1 domain that binds E2 Ub‐conjugating enzyme and a RING2 domain that contains an active site cysteine similar to HECT‐type E3s. Proposed to function as RING/HECT hybrids, details regarding the Ub transfer mechanism used by RBRs have yet to be defined. When paired with RING‐type E3s, E2s perform the final step of Ub ligation to a substrate. In contrast, when paired with RBR E3s, E2s must transfer Ub onto the E3 to generate a E3~Ub intermediate. We show that RBRs utilize two strategies to ensure transfer of Ub from the E2 onto the E3 active site. First, RING1 domains of HHARI and RNF144 promote open E2~Ubs. Second, we identify a Ub‐binding site on HHARI RING2 important for its recruitment to RING1‐bound E2~Ub. Mutations that ablate Ub binding to HHARI RING2 also decrease RBR ligase activity, consistent with RING2 recruitment being a critical step for the RBR Ub transfer mechanism. Finally, we demonstrate that the mechanism defined here is utilized by a variety of RBRs.  相似文献   
5.
This study explores the relationship between the normalized difference vegetation index (NDVI), aboveground plant biomass, and ecosystem C fluxes including gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem production. We measured NDVI across long-term experimental treatments in wet sedge tundra at the Toolik Lake LTER site, in northern Alaska. Over 13 years, N and P were applied in factorial experiments (N, P and N + P), air temperature was increased using greenhouses with and without N + P fertilizer, and light intensity (photosynthetically active photon flux density) was reduced by 50% using shade cloth. Within each treatment plot, NDVI, aboveground biomass and whole-system CO(2) flux measurements were made at the same sampling points during the peak-growing season of 2001. We found that across all treatments, NDVI is correlated with aboveground biomass ( r(2)=0.84), GEP ( r(2)=0.75) and ER ( r(2)=0.71), providing a basis for linking remotely sensed NDVI to aboveground biomass and ecosystem carbon flux.  相似文献   
6.
7.
The Escherichia coli product of the suhB gene, SuhB, is an inositol monophosphatase (IMPase) that is best known as a suppressor of temperature-sensitive growth phenotypes in E. coli. To gain insights into these biological diverse effects, we determined the structure of the SuhB R184A mutant protein. The structure showed a dimer organization similar to other IMPases, but with an altered interface suggesting that the presence of Arg-184 in the wild-type protein could shift the monomer-dimer equilibrium toward monomer. In parallel, a gel shift assay showed that SuhB forms a tight complex with RNA polymerase (RNA pol) that inhibits the IMPase catalytic activity of SuhB. A variety of SuhB mutant proteins designed to stabilize the dimer interface did not show a clear correlation with the ability of a specific mutant protein to complement the DeltasuhB mutation when introduced extragenically despite being active IMPases. However, the loss of sensitivity to RNA pol binding, i.e. in G173V, R184I, and L96F/R184I, did correlate strongly with loss of complementation of DeltasuhB. Because residue 184 forms the core of the SuhB dimer, it is likely that the interaction with RNA polymerase requires monomeric SuhB. The exposure of specific residues facilitates the interaction of SuhB with RNA pol (or another target with a similar binding surface) and it is this heterodimer formation that is critical to the ability of SuhB to rescue temperature-sensitive phenotypes in E. coli.  相似文献   
8.
Escherichia coli alkaline phosphatase exhibits maximal activity when Zn(2+) fills the M1 and M2 metal sites and Mg(2+) fills the M3 metal site. When other metals replace the zinc and magnesium, the catalytic efficiency is reduced by more than 5000-fold. Alkaline phosphatases from organisms such as Thermotoga maritima and Bacillus subtilis require cobalt for maximal activity and function poorly with zinc and magnesium. Previous studies have shown that the D153H alkaline phosphatase exhibited very little activity in the presence of cobalt, while the K328W and especially the D153H/K328W mutant enzymes can use cobalt for catalysis. To understand the structural basis for the altered metal specificity and the ability of the D153H/K328W enzyme to utilize cobalt for catalysis, we determined the structures of the inactive wild-type E. coli enzyme with cobalt (WT_Co) and the structure of the active D153H/K328W enzyme with cobalt (HW_Co). The structural data reveal differences in the metal coordination and in the strength of the interaction with the product phosphate (P(i)). Since release of P(i) is the slow step in the mechanism at alkaline pH, the enhanced binding of P(i) in the WT_Co structure explains the observed decrease in activity, while the weakened binding of P(i) in the HW_Co structure explains the observed increase in activity. These alterations in P(i) affinity are directly related to alterations in the coordination of the metals in the active site of the enzyme.  相似文献   
9.
SHARPIN (SHANK-associated RH domain interacting protein) is part of a large multi-protein E3 ubiquitin ligase complex called LUBAC (linear ubiquitin chain assembly complex), which catalyzes the formation of linear ubiquitin chains and regulates immune and apoptopic signaling pathways. The C-terminal half of SHARPIN contains ubiquitin-like domain and Npl4-zinc finger domains that mediate the interaction with the LUBAC subunit HOIP and ubiquitin, respectively. In contrast, the N-terminal region does not show any homology with known protein interaction domains but has been suggested to be responsible for self-association of SHARPIN, presumably via a coiled-coil region. We have determined the crystal structure of the N-terminal portion of SHARPIN, which adopts the highly conserved pleckstrin homology superfold that is often used as a scaffold to create protein interaction modules. We show that in SHARPIN, this domain does not appear to be used as a ligand recognition domain because it lacks many of the surface properties that are present in other pleckstrin homology fold-based interaction modules. Instead, it acts as a dimerization module extending the functional applications of this superfold.  相似文献   
10.
Ca(2+)-dependent phospholipase D is secreted from Streptomyces chromofuscus as an intact enzyme of 57 kDa (PLD(57)). Under certain growth conditions, PLD is proteolytically cleaved and activated to form PLD(42/20) (named for the apparent size of the peptides). The PLD(42) catalytic core and 20 kDa C-terminal domain remain tightly associated through noncovalent interactions. In the presence of Ba(2+) (to enhance protein binding to zwitterionic vesicles without hydrolysis of substrate), PLD(42/20), but not PLD(57), induces POPC vesicle leakiness as measured by entrapped CF leakage. PLD(42/20) also induces vesicle fusion (as measured by light scattering, fluorescence quenching, and cryo-TEM) under these conditions (1 mM POPC, 5 mM Ba(2+)); neither PLD(42) nor PLD(20) alone can act as a fusogen. For intact PLD(57) to cause CF leakiness, the soluble activator diC(4)PA must be present. However, even with diC(4)PA, PLD(57) does not induce significant vesicle fusion. In the absence of metal ions, all PLD forms bind to PC vesicles doped with 10 mol % PA. Again, only PLD(42/20) is fusogenic and causes aggregation and fusion on a rapid time scale. Taken together, these data suggest that activated PLD(42/20) inserts more readily into the lipid bilayer than other PLD forms and creates structures that allow bilayers to fuse. Cleavage of the PLD(57) by a secreted protease to generate PLD(42/20) occurs in the late stages of S. chromofuscus cell cultures. Production of this more active and fusogenic enzyme may play a role in nutrient scavenging in stationary phase cultures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号