首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2023年   1篇
  2019年   1篇
  2015年   2篇
  2013年   3篇
  2011年   1篇
排序方式: 共有8条查询结果,搜索用时 406 毫秒
1
1.
Pulmonary arterial hypertension (PAH) is a devastating disorder characterized by progressive elevation of the pulmonary pressures that, in the absence of therapy, results in chronic right-heart failure and premature death. The vascular pathology of PAH is characterized by progressive loss of small (diameter, less than 50 μm) peripheral pulmonary arteries along with abnormal medial thickening, neointimal formation, and intraluminal narrowing of the remaining pulmonary arteries. Vascular pathology correlates with disease severity, given that hemodynamic effects and disease outcomes are worse in patients with advanced compared with lower-grade lesions. Novel imaging tools are urgently needed that demonstrate the extent of vascular remodeling in PAH patients during diagnosis and treatment monitoring. Optical coherence tomography (OCT) is a catheter-based intravascular imaging technique used to obtain high-resolution 2D and 3D cross-sectional images of coronary arteries, thus revealing the extent of vascular wall pathology due to diseases such as atherosclerosis and in-stent restenosis; its utility as a diagnostic tool in the assessment of the pulmonary circulation is unknown. Here we show that OCT provides high-definition images that capture the morphology of pulmonary arterial walls in explanted human lungs and during pulmonary arterial catheterization of an adult pig. We conclude that OCT may facilitate the evaluation of patients with PAH by disclosing the degree of wall remodeling present in pulmonary vessels. Future studies are warranted to determine whether this information complements the hemodynamic and functional assessments routinely performed in PAH patients, facilitates treatment selection, and improves estimates of prognosis and outcome.Abbreviations: OCT, optical coherence tomography; PAC, pulmonary artery catheter; PAH, pulmonary arterial hypertensionPulmonary arterial hypertension (PAH) is a devastating disorder characterized by progressive elevation of pulmonary pressures that, when untreated, can lead to chronic right heart failure and death.14 The vascular pathology of PAH is characterized by neointimal formation, medial thickening, intravascular thrombi and, in severe cases, intravascular clusters of disorganized endothelial cells that give rise to tortuous endovascular channels.8 Most of the early vascular lesions are found in small (diameter, less than 50 μm) pulmonary arteries. However, as the disease advances, pulmonary arteries (diameter, 50 μm or larger) proximal to these lesions also display evidence of luminal narrowing and medial thickening.7,8,15 Most patients with PAH are younger than those with chronic systemic vascular disorders (that is, coronary artery disease, peripheral vascular disease, systemic hypertension), whose vascular pathology involves mostly large to medium-sized arteries. However, both patient populations demonstrate various pathologic features, including vascular smooth-cell accumulation, neointimal formation, inflammation, luminal narrowing, and alterations in the composition of the extracellular matrix.6,17The only definite way to diagnose PAH is through right heart catheterization to directly measure the pressure in the pulmonary circulation. Although pulmonary angiography during right heart catheterization cannot be used to diagnose PAH, it provides supportive evidence of PAH by demonstrating significant peripheral small vessel loss and luminal narrowing in the remaining central vessels. Angiography can help clinicians visualize pulmonary vessels in real time, but this diagnostic technique has important limitations. The use of ionized contrast can cause allergic reactions and may trigger acute renal failure due to contrast-induced nephropathy.26 In addition, pulmonary angiography provides information regarding gross vessel appearance and small vessel perfusion but not about the state of vascular wall remodeling or the extent of luminal narrowing associated with PAH at any stage.5,16 Therefore, imaging techniques are urgently needed that complement the hemodynamic information obtained via right heart catheterization with a safe and reproducible method to assess vascular wall pathology, thereby allowing clinicians to correlate the clinical evolution of PAH with the progression of vascular pathology.The last decade has seen tremendous progress in the development of intravascular imaging modalities that can identify patients at risk for developing complications related to systemic vascular disease and therefore prevent disease-related morbidity and mortality.4 One such modality is optical coherence tomography (OCT), an imaging technique that uses a thin (diameter, 1.0 mm) wire and near-infrared light to capture micrometer-resolution, 3D images from within optical scattering media (for example, biologic tissue).1 Superior to other intravascular imaging techniques, OCT is frequently used in patients with coronary artery disease, where it provides high-resolution images of the coronary arterial wall that correlate highly with pathology seen in explanted vessels.10,11,21 To date, several small studies have demonstrated the application of OCT to the evaluation of vascular remodeling in both idiopathic PAH and chronic thromboembolic PAH.7,21 However, despite OCT''s obvious advantages in the characterization of vascular remodeling in discrete segments of the pulmonary circulation, whether OCT provides anatomic information across the length of the pulmonary artery has not been tested.Here, we report the capacity of OCT to obtain both longitudinal and cross-sectional images that provide accurate anatomic information on healthy pulmonary arteries in explanted human lungs and during the pulmonary arterial catheterization of a live adult pig (Sus scrofa domesticus).  相似文献   
2.
3.
Quercetin is a plant flavonoid that has been recognized to have anti-inflammatory, antioxidant and anti-proliferative activities. This study aims to evaluate the inhibitory effects of quercetin against prostate malignancy in vitro and the underlying resistance mechanism. IC50 values of quercetin were determined by MTT assay. Annexin-V/PI staining was used to measure the rate of apoptosis. DNA cell cycle was analysed by PI staining method. Real-time PCR was performed to assess mRNA levels of OPN isoforms, VEGF isoforms, P53 and KLK2. Migration potential, proliferative capability and nucleus morphology of cells were evaluated by the scratch-wound assay, colony-forming assay and Hoechst staining, respectively. Quercetin significantly increased the apoptosis rate of PC-3 and LNCaP cell lines, arrested the cell cycle at the sub-G1/G1 phase, and reduced the migration potential and colony-forming capability. Moreover, upregulation of apoptosis-related genes and downregulation of genes involved in proliferation and angiogenesis was also observed. Although our results elucidated that quercetin has antitumor effects on PC-3 and LNCaP, for the first time, we showed that quercetin treatment causes alterations in the expression of OPN and VEGF isoforms, which are cancer-promoting modulators through various processes such as angiogenesis and drug-resistance. Prostate malignant cells can dodge the anti-carcinogenic properties of quercetin via modulation of OPN and VEGF isoforms in vitro. Therefore, quercetin acts as a double-edged sword in prostate cancer treatment.  相似文献   
4.
5.
Previous reports have indicated that artificial stimulation of the vagus nerve reduces systemic inflammation in experimental models of sepsis. This phenomenon is a part of a broader cholinergic anti-inflammatory pathway which activates the vagus nerve to modulate inflammation through activation of alpha7 nicotinic acetylcholine receptors (α7nACHR). Heart rate variability represents the complex interplay between autonomic nervous system and cardiac pacemaker cells. Reduced heart rate variability and increased cardiac cycle regularity is a hallmark of clinical conditions that are associated with systemic inflammation (e.g. endotoxemia and sepsis). The present study was aimed to assess the role of α7nACHR in modulation of heart rate dynamics during systemic inflammation. Systemic inflammation was induced by injection of endotoxin (lipopolysaccharide) in rats. Electrocardiogram and body temperature were recorded in conscious animals using a telemetric system. Linear and non-linear indices of heart rate variability (e.g. sample entropy and fractal-like temporal structure) were assessed. RT-PCR and immunohistochemistry studies showed that α7nACHR is expressed in rat atrium and is mainly localized at the endothelial layer. Systemic administration of an α7nACHR antagonist (methyllycaconitine) did not show a significant effect on body temperature or heart rate dynamics in naïve rats. However, α7nACHR blockade could further reduce heart rate variability and elicit a febrile response in endotoxemic rats. Pre-treatment of endotoxemic animals with an α7nACHR agonist (PHA-543613) was unable to modulate heart rate dynamics in endotoxemic rats but could prevent the effect of endotoxin on body temperature within 24 h experiment. Neither methyllycaconitine nor PHA-543613 could affect cardiac beating variability of isolated perfused hearts taken from control or endotoxemic rats. Based on our observations we suggest a tonic role for nicotinic acetylcholine receptors in modulation of heart rate dynamics during systemic inflammation.  相似文献   
6.
Defining genetic variants that predispose for diseases is an important initiative that can improve biological understanding and focus therapeutic development. Genetic mapping in humans and animal models has defined genomic regions controlling a variety of phenotypes known as quantitative trait loci (QTL). Causative disease determinants, including single nucleotide polymorphisms (SNPs), lie within these regions and can often be identified through effects on gene expression. We previously identified a QTL on rat chromosome 4 regulating macrophage phenotypes and immune-mediated diseases including experimental autoimmune encephalomyelitis (EAE). Gene analysis and a literature search identified lysine-specific demethylase 3A (Kdm3a) as a potential regulator of these phenotypes. Genomic sequencing determined only two synonymous SNPs in Kdm3a. The silent synonymous SNP in exon 15 of Kdm3a caused problems with quantitative PCR detection in the susceptible strain through reduced amplification efficiency due to altered secondary cDNA structure. Shape Probability Shift analysis predicted that the SNP often affects RNA folding; thus, it may impact protein translation. Despite these differences in rats, genetic knockout of Kdm3a in mice resulted in no dramatic effect on immune system development and activation or EAE susceptibility and severity. These results provide support for tools that analyze causative SNPs that impact nucleic acid structures.  相似文献   
7.
We previously showed that a single nucleotide polymorphism in S100A4 was associated with portopulmonary hypertension (PPHTN) in patients with advanced liver disease. We aimed to determine the association between plasma levels of S100A4 and PPHTN. We performed a case–control study of patients with advanced liver disease. Cases with PPHTN had mean pulmonary artery pressure >25?mmHg, pulmonary vascular resistance >240 dynes s?cm?5 and pulmonary capillary wedge pressure 15?mmHg. Controls with liver disease had right ventricular systolic pressure <40?mmHg and normal right atrial and ventricular morphology by echocardiography. Plasma samples were assayed for S100A4. The study sample included 14 cases with PPHTN and 32 controls with liver disease. There was no difference in mean age between cases and controls (p = 0.52). Seventy-nine percent of cases were female compared with 44% of controls (p?=?0.03). There was no difference in S100A4 levels between cases and controls (p?=?0.58). Both groups had significantly higher S100A4 levels than healthy volunteers (p?<0.05). There was no significant difference in plasma levels of S100A4 between PPHTN patients and controls with liver disease, although liver disease itself was associated with increased S100A4 levels.  相似文献   
8.
The human multidrug resistance (MDR1) gene product P-glycoprotein is highly expressed in intestinal epithelial cells, where it constitutes a barrier against xenobiotics, bacterial toxins, drugs and other biologically active compounds, possibly carcinogens. In this study, an association of MDR1 gene polymorphism and the occurrence of colorectal cancer were evaluated. In this case-control-designed 118 unrelated colorectal cancer and 137 sex-and-ages matched healthy controls were enrolled. The C3435T MDR1 gene polymorphism was identified using the polymerase chain reaction-restriction fragment length polymorphism method. Significantly increased frequencies of the 3435T allele and the 3435TT were observed in patients with colorectal cancer compared with controls (P = 0.03; OR, 95% CI; 1.46 for 3435T allele and P = 0.003; OR, 95% CI; 2.2 for 3435TT genotype). In contrast, frequency of genotype TT was significantly higher in controls compared to colorectal cancer (P = 0.006; OR, 95% CI; 0.49 for TC genotype). In this study suggest that C3435T MDR1 polymorphism has an association with colorectal cancer. The results support that the presence of allele C results in decreased susceptibility to colorectal cancer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号