首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2007年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.

Background

Arcobacter butzleri is a member of the epsilon subdivision of the Proteobacteria and a close taxonomic relative of established pathogens, such as Campylobacter jejuni and Helicobacter pylori. Here we present the complete genome sequence of the human clinical isolate, A. butzleri strain RM4018.

Methodology/Principal Findings

Arcobacter butzleri is a member of the Campylobacteraceae, but the majority of its proteome is most similar to those of Sulfuromonas denitrificans and Wolinella succinogenes, both members of the Helicobacteraceae, and those of the deep-sea vent Epsilonproteobacteria Sulfurovum and Nitratiruptor. In addition, many of the genes and pathways described here, e.g. those involved in signal transduction and sulfur metabolism, have been identified previously within the epsilon subdivision only in S. denitrificans, W. succinogenes, Sulfurovum, and/or Nitratiruptor, or are unique to the subdivision. In addition, the analyses indicated also that a substantial proportion of the A. butzleri genome is devoted to growth and survival under diverse environmental conditions, with a large number of respiration-associated proteins, signal transduction and chemotaxis proteins and proteins involved in DNA repair and adaptation. To investigate the genomic diversity of A. butzleri strains, we constructed an A. butzleri DNA microarray comprising 2238 genes from strain RM4018. Comparative genomic indexing analysis of 12 additional A. butzleri strains identified both the core genes of A. butzleri and intraspecies hypervariable regions, where <70% of the genes were present in at least two strains.

Conclusion/Significance

The presence of pathways and loci associated often with non-host-associated organisms, as well as genes associated with virulence, suggests that A. butzleri is a free-living, water-borne organism that might be classified rightfully as an emerging pathogen. The genome sequence and analyses presented in this study are an important first step in understanding the physiology and genetics of this organism, which constitutes a bridge between the environment and mammalian hosts.  相似文献   
2.
Kochetov  A. V.  Sirnik  O. A.  Rogosin  I. B.  Glazko  G. V.  Komarova  M. L.  Shumny  V. K. 《Molecular Biology》2002,36(4):510-516
Computer analysis of nucleotide sequences of 5"-untranslated regions (5"-UTR) of higher plant mRNA adopted from the EMBL nucleotide sequence database was carried out. It was demonstrated that the average nucleotide frequencies of the leader sequences and adjacent regions of basal promoters are similar, whereas introns and 3"-UTR have a higher content of T and a lower content of C. A particular 5"-UTR contextual feature is a misbalance in the content of complementary nucleotides, probably caused by negative influence of the stable secondary structure on the translation properties of the leader sequence. Approximately 20% of 5"-UTR possess AUG triplets, i.e., twice as much as it has been estimated earlier. The properties of the open reading frames of the leader sequence (uORF) and presumable causes of their high content in 5"-UTR of eukaryotic mRNAs are discussed. The nature of correlation between some features of uORFs and protein-coding gene sequences is analyzed. It is demonstrated that in effectively translated mRNAs the leader AUG triplets are more frequently located in a nonoptimal context, whereas the terminating codons of uORFs more frequently exist in the optimal one. A hypothesis is put forward that the efficiency of termination at the uORF stop codon might substantially interfere with the mRNA translation activity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号