全文获取类型
收费全文 | 268篇 |
免费 | 18篇 |
专业分类
286篇 |
出版年
2024年 | 2篇 |
2023年 | 2篇 |
2022年 | 3篇 |
2021年 | 5篇 |
2020年 | 4篇 |
2019年 | 4篇 |
2018年 | 2篇 |
2017年 | 10篇 |
2016年 | 4篇 |
2015年 | 11篇 |
2014年 | 10篇 |
2013年 | 12篇 |
2012年 | 15篇 |
2011年 | 24篇 |
2010年 | 11篇 |
2009年 | 7篇 |
2008年 | 13篇 |
2007年 | 16篇 |
2006年 | 10篇 |
2005年 | 14篇 |
2004年 | 9篇 |
2003年 | 9篇 |
2002年 | 5篇 |
2001年 | 4篇 |
2000年 | 7篇 |
1999年 | 6篇 |
1998年 | 6篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1994年 | 3篇 |
1992年 | 2篇 |
1990年 | 3篇 |
1987年 | 4篇 |
1986年 | 5篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1979年 | 4篇 |
1972年 | 2篇 |
1961年 | 2篇 |
1960年 | 1篇 |
1959年 | 1篇 |
1958年 | 1篇 |
1953年 | 1篇 |
1946年 | 1篇 |
1943年 | 1篇 |
1942年 | 2篇 |
1928年 | 2篇 |
1923年 | 1篇 |
1917年 | 1篇 |
排序方式: 共有286条查询结果,搜索用时 0 毫秒
1.
The metabolism and mutagenicity of the esophageal carcinogen N-nitroso-N-methylaniline (NMA) was studied using hepatic and esophageal 9000 X g supernatant (S-9) preparations from Sprague-Dawley rats induced with pyrazole and phenobarbital. Only pyrazole-induced hepatic S-9 was able to dose-dependently activate NMA to a mutagen in the Ames assay and specifically in Salmonella typhimurium TA1537. NMA in the presence of phenobarbital-induced S-9 gave a very weak non-dose dependent mutagenic response. Metabolism of NMA by the two induced hepatic and esophageal S-9 fractions yielded aniline and N-methylaniline (MA). Phenobarbital-induced S-9 from both tissues also afforded phenol, while none was found with the pyrazole-induced preparations. Phenol formation presumably arose from the direct oxidative demethylation of NMA via a benzenediazonium ion (BDI) intermediate. The results indicate that an important metabolic pathway for NMA, with both inducing agents, entails an initial denitrosation to yield MA, which in turn rapidly undergoes oxidative demethylation to aniline. The conversion of NMA to phenol also suggests that direct demethylation of NMA in the phenobarbital-induced system is an important metabolic pathway. 相似文献
2.
BtuB is a β‐barrel membrane protein that facilitates transport of cobalamin (vitamin B12) from the extracellular medium across the outer membrane of Escherichia coli. It is thought that binding of B12 to BtuB alters the conformation of its periplasm‐exposed N‐terminal residues (the TonB box), which enables subsequent binding of a TonB protein and leads to eventual uptake of B12 into the cytoplasm. Structural studies determined the location of the B12 binding site at the top of the BtuB's β‐barrel, surrounded by extracellular loops. However, the structure of the loops was found to depend on the method used to obtain the protein crystals, which—among other factors—differed in calcium concentration. Experimentally, calcium concentration was found to modulate the binding of the B12 substrate to BtuB. In this study, we investigate the effect of calcium ions on the conformation of the extracellular loops of BtuB and their possible role in B12 binding. Using all‐atom molecular dynamics, we simulate conformational fluctuations of several X‐ray structures of BtuB in the presence and absence of calcium ions. These simulations demonstrate that calcium ions can stabilize the conformation of loops 3–4, 5–6, and 15–16, and thereby prevent occlusion of the binding site. Furthermore, binding of calcium ions to extracellular loops of BtuB was found to enhance correlated motions in the BtuB structure, which is expected to promote signal transduction. Finally, we characterize conformation dynamics of the TonB box in different X‐ray structures and find an interesting correlation between the stability of the TonB box structure and calcium binding. Proteins 2010. © 2009 Wiley‐Liss, Inc. 相似文献
3.
To obtain a fundamental understanding of the population behaviour of Acidithiobacillus ferrooxidans at chalcopyrite and pyrite surfaces, the early stage attachment behaviour and biofilm formation by this bacterium on chalcopyrite (CuFeS2) and pyrite (FeS2) were studied by optical microscopy, Raman spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS) and electron backscatter diffraction (EBSD). The results indicate there was no significant difference in selectivity of bacterial attachment between chalcopyrite and pyrite. However, the result of ToF-SIMS analysis suggests that the surface of the pyrite was covered more extensively by biofilm than that of the chalcopyrite, which may indicate more extracellular polymeric substances (EPS) formation by bacterial cells growing on pyrite. EBSD and optical image analysis indicated that selectivity of bacterial attachment to chalcopyrite was not significantly affected by crystal orientation. The results also suggest that the bacterial population in defective areas of chalcopyrite was significantly higher than on the polished surfaces. 相似文献
4.
The neurotransmitter dopamine is oxidized to its quinone (DA-Q), which at neutral pH undergoes intramolecular cyclization by 1,4-Michael addition, followed by oxidation to form leukochrome, then aminochrome, and finally neuromelanin. At lower pH, the amino group of DA is partially protonated, allowing the competitive intermolecular 1,4-Michael addition with nucleophiles in DNA to form the depurinating adducts, DA-6-N3Ade and DA-6-N7Gua. Catechol estrogen-3,4-quinones react by 1,4-Michael addition to form the depurinating 4-hydroxyestrone(estradiol)-1-N3Ade [4-OHE1(E2)-1-N3Ade] and 4-OHE1(E2)-1-N7Gua adducts, which are implicated in the initiation of breast and other human cancers. The effect of pH was studied by reacting tyrosinase-activated DA with DNA and measuring the formation of depurinating adducts. The most adducts were formed at pH 4, 5, and 6, and their level was nominal at pH 7 and 8. The N3Ade adduct depurinated instantaneously, but N7Gua had a half-life of 3 H. The slow loss of the N7Gua adduct is analogous to that observed in previous studies of natural and synthetic estrogens. The antioxidants N-acetylcysteine and resveratrol efficiently blocked formation of the DA-DNA adducts. Thus, slightly acidic conditions render competitive the reaction of DA-Q with DNA to form depurinating adducts. We hypothesize that formation of these adducts could lead to mutations that initiate Parkinson's disease. If so, use of N-acetylcysteine and resveratrol as dietary supplements may prevent initiation of this disease. 相似文献
5.
6.
Julian G. Ayer Jason A. Harmer Clementine David Katherine S. Steinbeck J. Paul Seale David S. Celermajer 《Obesity (Silver Spring, Md.)》2011,19(1):54-60
The degree of arterial dilatation induced by exogenous nitrates (nitrate‐mediated dilatation, NMD) has been similar in obese and normal‐weight adults after single high‐dose glyceryl trinitrate (GTN). We examined whether NMD is impaired in obesity by performing a GTN dose‐response study, as this is a potentially more sensitive measure of arterial smooth muscle function. In this cross‐sectional study, subjects were 19 obese (age 31.0 ± 1.2 years, 10 male, BMI 44.1 ± 2.1) and 19 age‐ and sex‐matched normal‐weight (BMI 22.4 ± 0.4) young adults. Blood pressure (BP), triglycerides, high‐density lipoprotein (HDL), and low‐density lipoprotein (LDL)‐cholesterol, glucose, insulin, high‐sensitivity C‐reactive protein (hs‐CRP), carotid intima‐media thickness (CIMT), and flow‐mediated dilatation (FMD) were measured. After incremental doses of GTN, brachial artery maximal percent dilatation (maximal NMD) and the area under the dose‐response curve (NMD AUC) were calculated. Maximal NMD (13.4 ± 0.9% vs. 18.3 ± 1.1%, P = 0.002) and NMD AUC (54,316 ± 362 vs. 55,613 ± 375, P = 0.018) were lower in obese subjects. The obese had significantly higher hs‐CRP, insulin, and CIMT and lower HDL‐cholesterol. Significant bivariate associations existed between maximal NMD or NMD AUC and BMI‐group (r = ?0.492, P = 0.001 or r = ?0.383, P = 0.009), hs‐CRP (r = ?0.419, P = 0.004 or r = ?0.351, P = 0.015), and HDL‐cholesterol (r = 0.374, P = 0.01 or r = 0.270, P = 0.05). On multivariate analysis, higher BMI‐group remained as the only significant determinant of maximal NMD (r2 = 0.242, β = ?0.492, P = 0.002) and NMD AUC (r2 = 0.147, β = ?0.383, P = 0.023). In conclusion, arterial smooth muscle function is significantly impaired in the obese. This may be important in their increased cardiovascular risk. 相似文献
7.
Tamalee Roberts Joel Barratt Indy Sandaradura Rogan Lee John Harkness Deborah Marriott John Ellis Damien Stark 《PloS one》2015,10(3)
Leishmaniasis is a vector borne disease caused by protozoa of the genus Leishmania. Human leishmaniasis is not endemic in Australia though imported cases are regularly encountered. This study aimed to provide an update on the molecular epidemiology of imported leishmaniasis in Australia. Of a total of 206 biopsies and bone marrow specimens submitted to St Vincent’s Hospital Sydney for leishmaniasis diagnosis by PCR, 55 were found to be positive for Leishmania DNA. All PCR products were subjected to restriction fragment length polymorphism analysis for identification of the causative species. Five Leishmania species/species complexes were identified with Leishmania tropica being the most common (30/55). Travel or prior residence in a Leishmania endemic region was the most common route of acquisition with ~47% of patients having lived in or travelled to Afghanistan. Cutaneous leishmaniasis was the most common manifestation (94%) with only 3 cases of visceral leishmaniasis and no cases of mucocutaneous leishmaniasis encountered. This report indicates that imported leishmaniasis is becoming increasingly common in Australia due to an increase in global travel and immigration. As such, Australian clinicians must be made aware of this trend and consider leishmaniasis in patients with suspicious symptoms and a history of travel in endemic areas. This study also discusses the recent identification of a unique Leishmania species found in native kangaroos and a potential vector host which could create the opportunity for the establishment of a local transmission cycle within humans. 相似文献
8.
9.
Most carcinogens, including polycyclic aromatic hydrocarbons (PAH), require metabolic activation to produce the ultimate electrophilic species that bind covalently with cellular macromolecules to trigger the cancer process. Metabolic activation of PAH can be understood in terms of two main pathways: one-electron oxidation to yield reactive intermediate radical cations and monooxygenation to produce bay-region diol epoxides. The reason we have postulated that one-electron oxidation plays an important role in the activation of PAH derives from certain common characteristics of the radical cation chemistry of the most potent carcinogenic PAH. Two main features common to these PAH are: 1) a relatively low ionization potential, which allows easy metabolic removal of one electron, and 2) charge localization in the PAH radical cation that renders this intermediate specifically and efficiently reactive toward nucleophiles. Equally important, cytochrome P-450 and mammalian peroxidases catalyze one-electron oxidation. This mechanism plays a role in the binding of PAH to DNA. Chemical, biochemical and biological evidence will be presented supporting the important role of one-electron oxidation in the activation of PAH leading to initiation of cancer. 相似文献
10.
The metabolic profile of benzo[a]pyrene (BP) in cumene hydroperoxide-(CHP)-dependent reaction by male rat liver microsomes was dependent on CHP concentration. At 0.05 mM CHP, 3-hydroxy-BP was the major metabolite. Increase in CHP reduced 3-hydroxy-BP formation but increased BP quinone formation simultaneously. This change in metabolic profile was reversed by preincubation with pyrene. Pyrene (PY) selectively inhibited quinone formation but enhanced 3-hydroxy-BP formation. Naphthalene (NP) had no effect on BP quinone formation but inhibited BP 3-hydroxylation. Phenanthrene (PA) and benz[a]anthracene (BA) inhibited effectively 3-hydroxy-BP formation but only slightly quinone formation. BP binding to microsomal protein correlated to quinone formation and not BP 3-hydroxylation. BP metabolism by female rat liver microsomes also depended on CHP concentration but was much less efficient than the male. Quinones were consistently predominant metabolites and their formation was also inhibited by pyrene. Our data provide evidence that regioselectivity in BP metabolism involves at least two distinct binding sites. One site recognizes the benzo region of BP in BP 3-hydroxylation and the other recognizes the pyrene region in quinone formation. The different ratios of 3-hydroxy-BP to quinone formation by male and female rat liver microsomes suggest that the two binding sites are probably located at separate cytochrome P-450 isozymes. 相似文献