首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   869819篇
  免费   89413篇
  国内免费   288篇
  2018年   8843篇
  2017年   8444篇
  2016年   12068篇
  2015年   15967篇
  2014年   18775篇
  2013年   26773篇
  2012年   30291篇
  2011年   31035篇
  2010年   21138篇
  2009年   19546篇
  2008年   27639篇
  2007年   28737篇
  2006年   26912篇
  2005年   25830篇
  2004年   25534篇
  2003年   24515篇
  2002年   23928篇
  2001年   35900篇
  2000年   35226篇
  1999年   28726篇
  1998年   11269篇
  1997年   11088篇
  1996年   10637篇
  1995年   9877篇
  1994年   9494篇
  1993年   9544篇
  1992年   23311篇
  1991年   22722篇
  1990年   22205篇
  1989年   21605篇
  1988年   19808篇
  1987年   19031篇
  1986年   17788篇
  1985年   17756篇
  1984年   14768篇
  1983年   12918篇
  1982年   10012篇
  1981年   9147篇
  1980年   8480篇
  1979年   13577篇
  1978年   10815篇
  1977年   9744篇
  1976年   9291篇
  1975年   10251篇
  1974年   11047篇
  1973年   10852篇
  1972年   9826篇
  1971年   8774篇
  1970年   7676篇
  1969年   7534篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
1.
2.
3.
Squilla mantis hemocyanin is composed of two hexameric subunits but has electron microscopic profiles different from other bis-hexameric hemocyanins, e.g. Astacus and Homarus. We distinguished three different electron microscopic profiles of S. mantis hemocyanin: two sideviews and a topview. These profiles were studied using computer image alignment and correspondence analysis [Van Heel, M. and Frank, J. (1981) Ultramicroscopy 6, 187 - 194]. With the results of this analysis we were able to build a three-dimensional model for the quaternary structure of this hemocyanin. In this model the two hexamers are stacked in such a way that their hexagonal surfaces overlap to about 60% of their width. In the overlap area four subunits are arranged in two different interhexameric pairs, each forming a bridging area between the two hexamers.  相似文献   
4.
5.
6.
7.
8.
A conceptual model is proposed, describing potential Zostera marina habitats in the Wadden Sea, based on reported data from laboratory, mesocosm and field studies. Controlling factors in the model are dynamics, degree of desiccation, turbidity, nutrients and salinity. A distinction has been made between a higher and a lower zone of potential habitats, each suitable for different morphotypes of Z. marina. The model relates the decline of Z. marina in the Wadden Sea to increased sediment and water dynamics, turbidity, drainage of sediments (resulting in increased degree of desiccation) and total nutrient loads during the twentieth century. The upper and lower delineation of both the higher and the lower zone of potential Z. marina habitats appear to be determined by one or a combination of several of these factors. Environmental changes in one of these factors will therefore influence the borderlines of the zones. The lower zone of Z. marina will be mainly affected by increased turbidity, sediment dynamics, degree of desiccation during low tide and nutrient load. The higher zone will be affected by increases in water and sediment dynamics, desiccation rates and nutrient loads. Potential Z. marina habitats are located above approx. –0.80 m mean sea level (when turbidity remains at the same level as in the early 1990s) in sheltered, undisturbed locations, and preferably where some freshwater influence is present. At locations with a high, near-marine, salinity, the nutrient load has to be low to allow the growth of Z. marina. The sediment should retain enough water during low tide to keep the plants moist. Our results suggest that the return of Z. marina beds within a reasonable time-scale will require not only suitable habitat conditions, but also revegetation measures, as the changes in the environment resulting from the disappearance of Z. marina may impede its recovery, and the natural import of propagules will be unlikely. Furthermore, the lower zone of Z. marina may require a genotype that is no longer found in the Wadden Sea. Received: 26 April 1999 / Received in revised form: 15 October 1999 / Accepted: 16 October 1999  相似文献   
9.
10.
The alga Analipus japonicus (Harv.) Wynne displays a distinct seasonal pattern in its development in Peter the Great Bay (Sea of Japan). In winter and spring, it occurs only in the form of basal crusts, and vertical axes develop in the summer–autumn period. It reproduces mostly asexually from July to November. Algae with unilocular sporangia occur very seldom, only in June and July.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号