首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
  2022年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1996年   1篇
  1983年   1篇
  1973年   2篇
排序方式: 共有52条查询结果,搜索用时 267 毫秒
1.
A mathematical model of photosystem II (PSII) events was used to analyze chlorophyll fluorescence transients in the time domain from 100 ns to 10 s after excitation with a saturating 10-ns flash, applied as a part of specialized illumination protocol, using preparations of a thermophilic strain of the unicellular green alga, Chlorella pyrenoidosa Chick (using both intact and diuron-treated cells). Analysis of simulation results has proven that particular attention should be given to flash-induced recombination processes, including nonradiative recombination in PSII, while subsequent charge transfer along the electron transport chain of thylakoid membrane can be adequately described by a single reaction of quinone reoxidation. The PSII model was extended by taking inhibition by diuron of the electron transport in the acceptor side of PSII into account, which allowed simulation of fluorescence induction curves observed in the presence of this inhibitor. The model parameters were determined (stromal pH, rate constants of nonradiative recombination, and the initial reduction state of the quinone pool) which provided adequate simulation of experimentally observed ratios of the maximal and initial fluorescence levels (F m/F 0).  相似文献   
2.
The kinetics of photoinduced EPR I signals at different concentrations of ferredoxin was studied on isolated pea chloroplasts. A kinetic model of ferredoxin-dependent electron transport around photosystem I was suggested. A multiparticle model was constructed, which makes it possible to "directly" model the processes of electron transfer in multiprotein complexes and limited diffusion in different compartments of the system (stroma, lumen, and intermembrane space). A comparison of the kinetic and "direct" models revealed an important role of spatial organization of the system in the kinetics of redox turnover of P700.  相似文献   
3.
The basic mechanisms of kinetic regulation of photosynthetic processes are considered, which provide a strict light regulation of electron transfer in photosynthetic reaction centers and a more flexible regulation at the level of interaction of photosystems, transmembrane ion fluxes and coupling with dark reactions of the Calvin cycle. A generalized model was developed, which integrates the modern knowledge about photosynthetic processes of higher plants. The general principles of multilevel regulation in photosynthetic systems are discussed.  相似文献   
4.
A model of electrodiffusion processes in the vicinity of cell membrane was developed. The model takes into account chemical reactions, Coulomb interactions between charged particles and the effect of external electric field. It was concluded that the applied electric field can change the characteristics of space-time patterns in the system. Dissipative structures slowly move and this is accompanied by a change in the number of structure elements. The characteristic equation includes odd powers of the wavenumber, which can lead to the appearance of soliton-like structures. The dissipative structures can appear not only due to the Turing diffusion instability but due to the disperse instability under electric field the applied.  相似文献   
5.
Photosynthesis Research - The time courses of the photosystem II (PSII) redox states were analyzed with a model scheme supposing a fraction of 11–25 % semiquinone (with reduced...  相似文献   
6.
A kinetic model of the cytochrome bf complex was developed on the assumption that the Q-cycle operates. The bf complex was considered as a membrane enzyme catalyzing the electron transfer from plastoquinol to plastocyanine, which is coupled with proton translocation from the chloroplast stroma to the thylakoid lumen. The dependence of the electron transfer rates on the value of the transmembrane electric potential was taken into account. The model was applied to describe the experimental data on the flash-induced turnover of cytochromes b, plastocyanine, and the kinetics of proton deposition in the thylakoid lumen. The estimation of model parameters was performed.  相似文献   
7.
8.
A method for multiparticle computer simulation of photosynthetic electron transport in a thylakoid membrane has been developed. The basic principles of this method were described previously. The method is used to describe the cyclic electron flow around photosystem I. The effects of size and shape of the reaction volume on the kinetics of interaction of a mobile carrier with a protein complex and the limited diffusion of reactants were studied. It was shown that the kinetic parameters of photosynthetic electron transport processes depend on the distribution of protein complexes in the membrane. It was shown that the limited nature of diffusion of plastoquinone molecules in the membrane leads to a tenfold decrease in the efficient diffusion coefficient. It was shown that the occurrence of two phases of dark reduction of photooxidized P700+ is due to a heterogeneous spatial organization of the thylakoid membrane of a chloroplast.  相似文献   
9.
Principles of regulation on different levels of photosynthetic apparatus are discussed. Mathematical models of isolated photosynthetic reaction centers and general system of energy transduction in chloroplast are developed. A general approach to model these complex metabolic systems is suggested. Regulatory mechanisms in plant cell are correlated with the different patterns of fluorescence induction curve at different internal physiological states of the cells and external (environmental) conditions. Light regulation inside photosynthetic reaction centers, diffusion processes in thylakoid membrane, generation of transmembrane electrochemical potential, coupling with processes of CO2 fixation in Calvin Cycle are considered as stages of control of energy transformation in chloroplasts in their connection with kinetic patterns of fluorescence induction curves and other spectrophotometric data.  相似文献   
10.
Based on the measurements of fluorescence of bark chloroplasts by means of PAM and PEA fluorometers, the information capacity of the methods for assessing the physiological state of Tilia cordata L. from the maximum quantum efficiency of PS II photochemistry (Fv/Fm) and the performance index (PI) has been compared. The measurements were performed on annual shoots of linden trees growing in different environment. It was shown that the chlorophyll content in the bark of shoots growing near the busy urban street was twice less compared with trees growing out of the city. On the trees from the unsafe environment, a small decrease in the relative fluorescence variable (Fv/Fm) was registered, and there was a significant statistical deviation of this value compared to control trees. It was found that the PI and its constituent parameters calculated on the basis of light fluorescence induction curve (PEA-method) are more informative and allow one to recognize changes in the primary energy transformation processes in PS II when they are comparatively small. The results of our work show that PI can be used as a sensitive and a rapid test to evaluate the physiological state of trees and other plant objects even under minor environmental changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号