首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2022年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
The ability of living cells to alter their gene expression patterns in response to environmental changes is essential for viability. Oxidative stress represents a common threat for all aerobic life. In normally growing cells, in which hydrogen peroxide generation is transient or pulsed, the antioxidant systems efficiently control its concentration. Intracellular parasites must also protect themselves against the oxidative burst imposed by the host. In this work, we have investigated the role of KMTox, a new histone lysine methyltransferase, in the obligate intracellular parasite Toxoplasma gondii . KMTox is a nuclear protein that holds a High Mobility Group domain, which is thought to recognize bent DNA. The enzyme methylates both histones H4 and H2A in vitro with a great preference for the substrate in reduced conditions. Importantly, KMTox interacts specifically with the typical 2-cys peroxiredoxin-1 and the binding is to some extent enhanced upon oxidation. It appears that the cellular functions that are primarily regulated by the KMTox are antioxidant defences and maintenance of cellular homeostasis. KMTox may regulate gene expression in T. gondii by providing the rapid re-arrangement of chromatin domains and by interacting with the redox-sensor TgPrx1 contribute to establish the antioxidant 'firewall' in T. gondii .  相似文献   
5.
To shed light on the genetic equipment of the beneficial plant-associated bacterium Pseudomonas brassicacearum, we sequenced the whole genome of the strain NFM421. Its genome consists of one chromosome equipped with a repertoire of factors beneficial for plant growth. In addition, a complete type III secretion system and two complete type VI secretion systems were identified. We report here the first genome sequence of this species.  相似文献   
6.
Ramlibacter tataouinensis TTB310(T) (strain TTB310), a betaproteobacterium isolated from a semi-arid region of South Tunisia (Tataouine), is characterized by the presence of both spherical and rod-shaped cells in pure culture. Cell division of strain TTB310 occurs by the binary fission of spherical "cyst-like" cells ("cyst-cyst" division). The rod-shaped cells formed at the periphery of a colony (consisting mainly of cysts) are highly motile and colonize a new environment, where they form a new colony by reversion to cyst-like cells. This unique cell cycle of strain TTB310, with desiccation tolerant cyst-like cells capable of division and desiccation sensitive motile rods capable of dissemination, appears to be a novel adaptation for life in a hot and dry desert environment. In order to gain insights into strain TTB310's underlying genetic repertoire and possible mechanisms responsible for its unusual lifestyle, the genome of strain TTB310 was completely sequenced and subsequently annotated. The complete genome consists of a single circular chromosome of 4,070,194 bp with an average G+C content of 70.0%, the highest among the Betaproteobacteria sequenced to date, with total of 3,899 predicted coding sequences covering 92% of the genome. We found that strain TTB310 has developed a highly complex network of two-component systems, which may utilize responses to light and perhaps a rudimentary circadian hourglass to anticipate water availability at the dew time in the middle/end of the desert winter nights and thus direct the growth window to cyclic water availability times. Other interesting features of the strain TTB310 genome that appear to be important for desiccation tolerance, including intermediary metabolism compounds such as trehalose or polyhydroxyalkanoate, and signal transduction pathways, are presented and discussed.  相似文献   
7.
8.
9.
10.
A set of benzenesulfonamide (BSA) derivatives bearing a hydroxypyrimidinone (HPM) moiety were synthesized and investigated for their inhibitory activity against several carbonic anhydrase (CA, EC 4.2.1.1) isozymes. They all revealed to be very potent inhibitors (nanomolar order) of the cytosolic CA I and II isozymes, but especially of the transmembrane, tumor-associated CA IX isozyme, a beneficial feature for a potential antitumor effect of these compounds. Further structure optimization aimed at improving the specificity of CA inhibition and enhancing their matrix metalloproteinase (MMP) inhibitory activity may also lead to new compounds with an attractive dual mechanism of action as antitumor agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号