首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   5篇
  国内免费   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2013年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   5篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1965年   1篇
  1964年   1篇
  1957年   1篇
排序方式: 共有46条查询结果,搜索用时 16 毫秒
1.
The relationship of filipin-sterol complexes to tight and gap junctions during their formation, maturation, internalization, and degradation was studied in separate cell lines. Filipin-sterol complexes tended to be excluded from mature junctions in tight junction forming COLO 316 cells and gap junction forming SW-13 cells. Once internalized, unlabeled junctional membrane appeared to fuse with heavily labeled vesicles, presumably lysosomes. Although the absence of filipin-sterol complexes from junctional membrane does not necessarily reflect the absolute sterol content of this membrane, the fact that filipin-sterol complexes are largely excluded from these areas indicates that this membrane is different from surrounding membrane. The absence of filipin-sterol complexes also permits the visualization of 'mixing' of this specialized unlabeled membrane domain with other filipin labeled membrane systems.  相似文献   
2.
3.
4.
5.
Taccalonolide A is a microtubule stabilizer that has cellular effects almost identical to paclitaxel. However, biochemical studies show that, unlike paclitaxel, taccalonolide A does not enhance purified tubulin polymerization or bind tubulin/microtubules. Mechanistic studies aimed at understanding the nature of the differences between taccalonolide A and paclitaxel were conducted. Our results show that taccalonolide A causes bundling of interphase microtubules at concentrations that cause antiproliferative effects. In contrast, the concentration of paclitaxel that initiates microtubule bundling is 31-fold higher than its IC50. Taccalonolide A''s effects are further differentiated from paclitaxel in that it is unable to enhance the polymerization of tubulin in cellular extracts. This finding extends previous biochemical results with purified brain tubulin to demonstrate that taccalonolide A requires more than tubulin and a full complement of cytosolic proteins to cause microtubule stabilization. Reversibility studies were conducted and show that the cellular effects of taccalonolide A persist after drug washout. In contrast, other microtubule stabilizers, including paclitaxel and laulimalide, demonstrate a much higher degree of cellular reversibility in both short-term proliferation and long-term clonogenic assays. The propensity of taccalonolide A to alter interphase microtubules at antiproliferative concentrations as well as its high degree of cellular persistence may explain why taccalonolide A is more potent in vivo than would be expected from cellular studies. The close linkage between the microtubule bundling and antiproliferative effects of taccalonolide A is of interest given the recent hypothesis that the effects of microtubule targeting agents on interphase microtubules might play a prominent role in their clinical anticancer efficacy.Key words: taccalonolide, paclitaxel, microtubule stabilizer, microtubule targeted agent, tubulin, microtubule, laulimalide, antimitotic agent, drug persistence  相似文献   
6.
7.
The hematopoietic growth factor erythropoietin (Epo) initiates its intracellular signaling cascade by binding to and inducing the homodimerization of two identical receptor molecules. We have now constructed and expressed in COS cells a cDNA encoding a fusion protein consisting of two complete human Epo domains linked in tandem by a 17-amino acid flexible peptide. On SDS-polyacrylamide gel electrophoresis, the Epo-Epo fusion protein migrated as a broad band with an average apparent molecular mass of 76 kDa, slightly more than twice the average apparent molecular mass of Epo, 37 kDa. Enzymatic N-deglycosylation resulted in an Epo-Epo species that migrated on SDS-polyacrylamide gel electrophoresis as a narrow band with an average apparent molecular mass of 39 kDa. The specific activity of the Epo-Epo fusion protein in vitro (1,007 IU/microgram; 76 IU/pmol) was significantly greater than that of Epo (352 IU/microgram; 13 IU/pmol). Moreover, secretion of Epo-Epo by COS cells was 8-fold greater than that of Epo. Subcutaneous administration of a single dose of Epo-Epo to mice resulted in a significant increase in red blood cell production within 7 days. In contrast, administration of an equivalent dose of conventional recombinant Epo was without effect. The pharmacokinetic behavior of Epo-Epo differed significantly from that of Epo. The results suggest that Epo-Epo may have important biological and therapeutic advantages.  相似文献   
8.
The high capacity general amino acid permease, Gap1p, in Saccharomyces cerevisiae is distributed between the plasma membrane and internal compartments according to availability of amino acids. When internal amino acid levels are low, Gap1p is localized to the plasma membrane where it imports available amino acids from the medium. When sufficient amino acids are imported, Gap1p at the plasma membrane is endocytosed and newly synthesized Gap1p is delivered to the vacuole; both sorting steps require Gap1p ubiquitination. Although it has been suggested that identical trans-acting factors and Gap1p ubiquitin acceptor sites are involved in both processes, we define unique requirements for each of the ubiquitin-mediated sorting steps involved in delivery of Gap1p to the vacuole upon amino acid addition. Our finding that distinct ubiquitin-mediated sorting steps employ unique trans-acting factors, ubiquitination sites on Gap1p, and types of ubiquitination demonstrates a previously unrecognized level of specificity in ubiquitin-mediated protein sorting.  相似文献   
9.
10.
The discovery, synthesis and biological evaluations of a series of nine N5-substituted-pyrrolo[3,2-d]pyrimidin-4-amines are reported. Novel compounds with microtubule depolymerizing activity were identified. Some of these compounds also circumvent clinically relevant drug resistance mechanisms (expression of P-glycoprotein and βIII tubulin). Compounds 4, 5, and 813 were one to two-digit nanomolar (IC50) inhibitors of cancer cells in culture. Contrary to recent reports (Banerjee et al. J. Med. Chem.2018, 61, 1704–1718), the conformation of the most active compounds determined by 1H NMR and molecular modeling are similar to that reported previously and in keeping with recently reported X-ray crystal structures. Compound 11, freely water soluble as the HCl salt, afforded statistically significant inhibition of tumor growth in three xenograft models [MDA-MB-435, MDA-MB-231 and NCI/ADR-RES] compared with controls. Compound 11 did not display indications of animal toxicity and is currently slated for further preclinical development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号