首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   6篇
  2023年   1篇
  2022年   3篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
2.
A general assumption in quantitative genetics is the existence of an intermediate phenotype with higher mean individual fitness in the average environment than more extreme phenotypes. Here, we investigate the evolvability and presence of such a phenotype in wild bird populations from an eleven‐year experiment with four years of artificial selection for long and short tarsus length, a proxy for body size. The experiment resulted in strong selection in the imposed directions. However, artificial selection was counteracted by reduced production of recruits in offspring of artificially selected parents. This resulted in weak natural selection against extreme trait values. Significant responses to artificial selection were observed at both the phenotypic and genetic level, followed by a significant return toward preexperimental means. During artificial selection, the annual observed phenotypic response closely followed the predicted response from quantitative genetic theory ( = 0.96, = 0.56). The rapid return to preexperimental means was induced by three interacting mechanisms: selection for an intermediate phenotype, immigration, and recombination between selected and unselected individuals. The results of this study demonstrates the evolvability of phenotypes and that selection may favor an intermediate phenotype in wild populations.  相似文献   
3.
Dispersal plays a key role in the response of populations to climate change and habitat fragmentation. Here, we use data from a long-term metapopulation study of a non-migratory bird, the house sparrow (Passer domesticus), to examine the influence of increasing spring temperature and density-dependence on natal dispersal rates and how these relationships depend on spatial variation in habitat quality. The effects of spring temperature and population size on dispersal rate depended on the habitat quality. Dispersal rate increased with temperature and population size on poor-quality islands without farms, where house sparrows were more exposed to temporal fluctuations in weather conditions and food availability. By contrast, dispersal rate was independent of spring temperature and population size on high-quality islands with farms, where house sparrows had access to food and shelter all the year around. This illustrates large spatial heterogeneity within the metapopulation in how population density and environmental fluctuations affect the dispersal process.  相似文献   
4.
Gene transfer may occur following hybridization between closely related species if hybrids are viable and able to breed with individuals of one or both of the parental species. House (Passer domesticus) and tree sparrows (P. montanus) occasionally hybridize and produce viable offspring. Previously, we concluded that male tree × house sparrow hybrids are most probably fertile based on the observation of a male F1 hybrid feeding the nestlings with a female house sparrow in two consecutive clutches. However, recent DNA analyses based on blood samples revealed that all nestlings (4) in the first clutch were sired by a neighbouring house sparrow male, whereas nestlings in the second clutch (2) were not blood sampled and most probably died before fledging. This indicates that extensive extra-pair fertilization confounded our previous conclusion, and indicates that social partnership and attending behaviour can be imprecise measures of paternity.  相似文献   
5.
1.  Dispersal affects many important ecological and evolutionary processes. Still, little is known about the fitness of dispersing individuals.
2.  Here, we use data from a long-term study of a house sparrow Passer domesticus metapopulation to compare lifetime reproductive success (LRS) of resident and immigrant individuals, all with known origin.
3.  Lifetime production of recruits by immigrant males was much lower than for resident males, because of shorter life span and lower annual mating success. In contrast, lifetime production of recruits did not differ significantly between immigrant and resident females.
4.  Over their lifetime, dispersers contributed fewer recruits to the local population than residents. This shows that immigrant house sparrows have different, sex specific, demographic effects on the population dynamics than residents.  相似文献   
6.
Estimates of genetic components are important for our understanding of how individual characteristics are transferred between generations. We show that the level of heritability varies between 0.12 and 0.68 in six morphological traits in house sparrows (Passer domesticus L.) in northern Norway. Positive and negative genetic correlations were present among traits, suggesting evolutionary constraints on the evolution of some of these characters. A sexual difference in the amount of heritable genetic variation was found in tarsus length, wing length, bill depth and body condition index, with generally higher heritability in females. In addition, the structure of the genetic variance-covariance matrix for the traits differed between the sexes. Genetic correlations between males and females for the morphological traits were however large and not significantly different from one, indicating that sex-specific responses to selection will be influenced by intersexual differences in selection differentials. Despite this, some traits had heritability above 0.1 in females, even after conditioning on the additive genetic covariance between sexes and the additive genetic variances in males. Moreover, a meta-analysis indicated that higher heritability in females than in males may be common in birds. Thus, this indicates sexual differences in the genetic architecture of birds. Consequently, as in house sparrows, the evolutionary responses to selection will often be larger in females than males. Hence, our results suggest that sex-specific additive genetic variances and covariances, although ignored in most studies, should be included when making predictions of evolutionary changes from standard quantitative genetic models.  相似文献   
7.
An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus). We obtained measurements of BMR and body mass (Mb) from 911 house sparrows on the islands of Leka and Vega along the coast of Norway. These two populations were the source populations for translocations to create an additional third, admixed ‘common garden’ population in 2012. With the use of a novel genetic group animal model concomitant with a genetically determined pedigree, we differentiate genetic and environmental sources of variation, thereby providing insight into the effects of spatial population structure on evolutionary potential. We found that the evolutionary potential of BMR was similar in the two source populations, whereas the Vega population had a somewhat higher evolutionary potential of Mb than the Leka population. BMR was genetically correlated with Mb in both populations, and the conditional evolutionary potential of BMR (independent of body mass) was 41% (Leka) and 53% (Vega) lower than unconditional estimates. Overall, our results show that there is potential for BMR to evolve independently of Mb, but that selection on BMR and/or Mb may have different evolutionary consequences in different populations of the same species.  相似文献   
8.
Summary Viability and a seemingly successful breeding of a F1 House Sparrow x Tree Sparrow hybrid are reported from islands off the coast of northern Norway. From two consecutive clutches of House Sparrow x Tree Sparrow hybrids recorded in 1995, only one of 7 chicks survived the first year. The surviving individual was later, in 1997, found attending the nest with a female House Sparrow and feeding the young in two consecutive clutches. Neither of the F2 hybrids were observed after fledging. Despite the fact that House Sparrows indulge in frequent extra pair copulation, we find it unlikely that both clutches fed by the male hybrid could have been fathered by a House Sparrow male and therefore conclude that the F1 male hybrid was fertile. The hybridisation may have been facilitated by the fragmented structure and small size (from 5 to 100 individuals) of the sub-populations found in our study area.
Fertile Haus- x Feldsperling (Passer domesticus X Passer montanus) Hybride?
Zusammenfassung Wir berichten über die Überlebensfähigkeit und einen offenbar erfolgreichen Brutversuch eines F1 Haussperling x Feldsperling Hybriden auf Inseln vor der nordnorwegischen Küste. Aus zwei aufeinanderfolgenden Gelegen eines gemischten Haus-/Feldsperling Paares, die wir 1995 beobachtet hatten, überlebte nur eines von sieben Jungtieren das erste Jahr. Das überlebende Individuum nistete später, 1997, mit einem Haussperlingweibchen und fütterte die Jungen zweier aufeinanderfolgender Bruten. Keiner der F2 Hybriden wurde nach dem Schlüpfen beobachtet. Obwohl bei Haussperlingen Kopulationen außerhalb des Paares häufig sind, betrachten wir es als unwahrscheinlich, daß beide vom männlichen Hybriden gefütterten Bruten von einem Haussperlingmännchen gezeugt worden waren. Wir schließen deshalb, daß das F1 Hybridmännchen fruchtbar war. Die Hybridisierung könnte durch die fragmentierte Struktur und die kleine Größe (5 bis 100 Individuen) der lokalen Populationen erleichtert worden sein.
  相似文献   
9.
Inbreeding causes reduction of genetic variability that may have severe fitness consequences. In spite of its potentially huge impact on viability and evolutionary processes especially in small populations, quantitative demonstrations of genetic and demographic effects of inbreeding in natural populations are few. Here, we examine the relationship between individual inbreeding coefficients (F) and individual standardized multilocus heterozygosity (H) in an insular metapopulation of house sparrows (Passer domesticus) in northern Norway in order to evaluate whether H is a good predictor for F. We then relate variation in fitness (i.e. the probability of surviving from fledging to recruitment) to F and H, which enables us to examine whether inbreeding depression is associated with a reduction in genetic variability. The average level of inbreeding in the house sparrow metapopulation was high, and there was large inter-individual variation in F. As expected, standardized multilocus heterozygosity decreased with the level of inbreeding. The probability of recruitment was significantly negatively related to F, and, accordingly, increased with H. However, H explained no significant additional variation in recruitment rate than was explained by F. This suggests that H is a good predictor for F in this metapopulation, and that an increase in F is likely to be associated with a general increase in the level of homozygosity on loci across the genome, which has severe fitness consequences.  相似文献   
10.
We derive formulas that can be applied to estimate the effective population size N(e) for organisms with two sexes reproducing once a year and having constant adult mean vital rates independent of age. Temporal fluctuations in population size are generated by demographic and environmental stochasticity. For populations with even sex ratio at birth, no deterministic population growth and identical mean vital rates for both sexes, the key parameter determining N(e) is simply the mean value of the demographic variance for males and females considered separately. In this case Crow and Kimura's generalization of Wright's formula for N(e) with two sexes, in terms of the effective population sizes for each sex, is applicable even for fluctuating populations with different stochasticity in vital rates for males and females. If the mean vital rates are different for the sexes then a simple linear combination of the demographic variances determines N(e), further extending Wright's formula. For long-lived species an expression is derived for N(e) involving the generation times for both sexes. In the general case with nonzero population growth and uneven sex ratio of newborns, we use the model to investigate numerically the effects of different population parameters on N(e). We also estimate the ratio of effective to actual population size in six populations of house sparrows on islands off the coast of northern Norway. This ratio showed large interisland variation because of demographic differences among the populations. Finally, we calculate how N(e) in a growing house sparrow population will change over time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号