首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   8篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Controlled ensemble formation of protein-surfactant systems provides a fundamental concept for the realization of nanoscale devices with self-organizing capability. In this context, spectroscopic monitoring of pigment-containing proteins yields detailed structural information. Here we have studied the association behavior of the bacterial light-harvesting protein LH2 from Rhodobacter spheroides in an n,n-dimethyldodecylamine-n-oxide/water environment. Time-resolved studies of the excitation annihilation yielded information about aggregate sizes and packing of the protein complexes therein. The results are compared to transmission electron microscopy images of instantaneously frozen samples. Our data indicate the manifestation of different phases, which are discussed with respect to the thermodynamic equilibrium in ternary protein-surfactant-water systems. Accordingly, by varying the concentration the formation of different types of aggregates can be controlled. Conditions for the appearance of isolated LH2 complexes are defined.  相似文献   
2.
The excited state decay kinetics of chromatophores of the purple photosynthetic bacterium Rhodospirillum rubrum have been recorded at 77 K using picosecond absorption difference spectroscopy under strict annihilation free conditions. The kinetics are shown to be strongly detection wavelength dependent. A simultaneous kinetic modeling of these experiments together with earlier fluorescence kinetics by numerical integration of the appropriate master equation is performed. This model, which accounts for the spectral inhomogeneity of the core light-harvesting antenna of photosynthetic purple bacteria, reveals three qualitatively distinct stages of excitation transfer with different time scales. At first a fast transfer to a local energy minimum takes place (approximately 1 ps). This is followed by a much slower transfer between different energy minima (10-30 ps). The third component corresponds to the excitation transfer to the reaction center, which depends on its state (60 and 200 ps for open and closed, respectively) and seems also to be the bottleneck in the overall trapping time. An acceptable correspondence between theoretical and experimental decay kinetics is achieved at 77 K and at room temperature by assuming that the width of the inhomogeneous broadening is 10-15 nm and the mean residence time of the excitation in the antenna lattice site is 2-3 ps.  相似文献   
3.
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily being expressed as a cell surface molecule and binding a variety of ligands. One of these ligands is high-mobility group box chromosomal protein 1, a potent proinflammatory cytokine, expression of which is increased in synovial tissue and in synovial fluid of rheumatoid arthritis (RA) patients. The interaction of high-mobility group box chromosomal protein 1 with cell-surface RAGE leads to an inflammatory response. In contrast, the presence of soluble RAGE (sRAGE) may abrogate cellular activation since the ligand is bound prior to interaction with the surface receptor.  相似文献   
4.
A spectroscopic characterization of the chlorophyll a (Chl) molecule in the monomeric cytochrome b6f complex (Cytb6f) isolated from the cyanobacterium Synechocystis PCC6803 is presented. The fluorescence lifetime and quantum yield have been determined, and it is shown that Chl in Cytb6f has an excited-state lifetime that is 20 times smaller than that of Chl in methanol. This shortening of the Chl excited state lifetime is not caused by an increased rate of intersystem crossing. Most probably it is due to quenching by a nearby amino acid. It is suggested that this quenching is a mechanism for preventing the formation of Chl triplets, which can lead to the formation of harmful singlet oxygen. Using site-selected fluorescence spectroscopy, detailed information on vibrational frequencies in both the ground and Qy excited states has been obtained. The vibrational frequencies indicate that the Chl molecule has one axial ligand bound to its central magnesium and accepts a hydrogen bond to its 13(1)-keto carbonyl. The results show that the Chl binds to a well-defined pocket of the protein and experiences several close contacts with nearby amino acids. From the site-selected fluorescence spectra, it is further concluded that the electron-phonon coupling is moderately strong. Simulations of both the site-selected fluorescence spectra and the temperature dependence of absorption and fluorescence spectra are presented. These simulations indicate that the Huang-Rhys factor characterizing the electron-phonon coupling strength is between 0.6 and 0.9. The width of the Gaussian inhomogeneous distribution function is 210 +/- 10 cm-1.  相似文献   
5.
The picosecond time-domain incoherent singlet excitation transfer and trapping kinetics in core antenna of photosynthetic bacteria are studied in case of low excitation intensities by numerical integration of the appropriate master equation in a wide temperature range of 4-300 K. The essential features of our two-dimensional-lattice model are as follows: Förster excitation transfer theory, spectral heterogeneity of both the light-harvesting antenna and the reaction center, treatment of temperature effects through temperature dependence of spectral bands, inclusion of inner structure of the trap, and transition dipole moment orientation. The fluorescence kinetics is analyzed in terms of distributions of various kinetic components, and the influence of different inhomogeneities (orientational, spectral) is studied.

A reasonably good agreement between theoretical and experimental fluorescence decay kinetics for purple photosynthetic bacterium Rhodospirillum rubrum is achieved at high temperatures by assuming relatively large antenna spectral inhomogeneity: 20 nm at the whole bandwidth of 40 nm. The mean residence time in the antenna lattice site (it is assumed to be the aggregate of four bacteriochlorophyll a molecules bound to proteins) is estimated to be ~12 ps. At 4 K only qualitative agreement between model and experiment is gained. The failure of quantitative fitting is perhaps due to the lack of knowledge about the real structure of antenna or local heating and cooling effects not taken into account.

  相似文献   
6.
Femtosecond transient absorption measurements were performed on native and a series of reconstituted LH2 complexes from Rhodopseudomonas acidophila 10050 at room temperature. The reconstituted complexes contain chemically modified tetrapyrrole pigments in place of the native bacteriochlorophyll a-B800 molecules. The spectral characteristics of the modified pigments vary significantly, such that within the B800 binding sites the B800 Q(y) absorption maximum can be shifted incrementally from 800 to 670 nm. As the spectral overlap between the B800 and B850 Q(y) bands decreases, the rate of energy transfer (as determined by the time-dependent bleaching of the B850 absorption band) also decreases; the measured time constants range from 0.9 ps (bacteriochlorophyll a in the B800 sites, Q(y) absorption maximum at 800 nm) to 8.3 ps (chlorophyll a in the B800 sites, Q(y) absorption maximum at 670 nm). This correlation between energy transfer rate and spectral blue-shift of the B800 absorption band is in qualitative agreement with the trend predicted from F?rster spectral overlap calculations, although the experimentally determined rates are approximately 5 times faster than those predicted by simulations. This discrepancy is attributed to an underestimation of the electronic coupling between the B800 and B850 molecules.  相似文献   
7.
Receptor for advanced glycation end products (RAGE) is a pattern recognition receptor that binds a variety of pro-inflammatory ligands. Its soluble form, sRAGE, can compete for ligand binding and thereby have an anti-inflammatory effect. We have recently reported that sRAGE also exerts pro-inflammatory and chemotactic properties suggesting a dual role for sRAGE in immune modulation. Our present aim was to analyse the immunomodulatory properties of sRAGE in vivo with respect to acquired immunity. Naive mice were treated intra-peritoneally with sRAGE and cells from peritoneal lavage, spleens and bone marrow were examined. Mice treated with sRAGE displayed an increased leucocyte count in the peritoneal cavity, enlarged spleens and increased cellularity compared with vehicle-treated animals. Furthermore, sRAGE-treated mice had a significantly increased frequency and number of CD19+ B cells in spleen and a reduced frequency of CD19+ B cells in bone marrow compared with controls. Functionally, splenocytes from sRAGE-treated mice showed elevated IgG production and up to a four-fold increased IgM secretion compared with control animals and produced significantly higher levels of interleukin-10, interferon-γ and interleukin-6 in response to lipopolysaccharide stimulation. Our results suggest that sRAGE has immunomodulatory properties, since intra-peritoneal administration of sRAGE into healthy mice leads to rearrangements in cellular composition in the bone marrow and spleen. Moreover, the administration of sRAGE directs B cells into the spleen and towards differentiation. Our novel findings indicate that sRAGE exerts an effect on the cells of adaptive immunity.  相似文献   
8.
The intensity dependence of picosecond kinetics in the light-harvesting antenna of the photosynthetic bacterium Rhodospirillum rubrum is studied at 77 K. By changing either the average excitation intensity or the pulse intensity we have been able to discriminate singlet-singlet and singlet-triplet annihilation. It is shown that the kinetics of both annihilation types are well characterized by the concept of percolative excitation dynamics leading to the time-dependent annihilation rates. The time dependence of these two types of annihilation rates is qualitatively different, whereas the dependencies can be related through the same adjustable parameter-a spectral dimension of fractal-like structures. The theoretical dependencies give a good fit to the experimental kinetics if the spectral dimension is equal to 1.5 and the overall singlet-singlet annihilation rate is close to the value obtained at room temperature. The percolative transfer is a consequence of spectral inhomogeneous broadening. The effect is more pronounced at lower temperatures because of the narrowing of homogeneous spectra.  相似文献   
9.
Energy transfer within the peripheral light-harvesting antenna of the purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris was studied by one- and two-color pump-probe absorption spectroscopy with approximately 100-fs tunable pulses at room temperature and at 77 K. The energy transfer from B800 to B850 occurs with a time constant of 0.7 +/- 0.05 ps at room temperature and 1.8 +/- 0.2 ps at 77 K and is similar in both species. Anisotropy measurements suggest a limited but fast B800 <--> B800 transfer time (tau approximately 0.3 ps). This is analyzed as incoherent hopping of the excitation in a system of spectrally inhomogeneous antenna pigment-protein complexes, by a master equation approach. The simulations show that the measured B800 dynamics is well described as energy transfer with a characteristic average nearest-neighbor pairwise transfer time of 0.35 ps among approximately 10 Bchl molecules in a circular arrangement, in good agreement with the recent high-resolution structure of LH2. The possible presence of fast intramolecular relaxation processes within the Bchl a molecule was investigated by measurement of time-resolved difference absorption spectra and kinetics of Bchl a in solution and in low-temperature glasses. From these measurements it is concluded that fast transients observed at room temperature are due mainly to solvation processes, whereas at 77 K predominantly slower (> 10-ps) relaxation occurs.  相似文献   
10.

Introduction

TNFα and high mobility group box chromosomal protein 1 (HMGB1) are two potent proinflammatory cytokines implicated as important mediators of arthritis. Increased levels of these cytokines are found in the joints of rheumatoid arthritis patients, and the cytokines trigger arthritis when applied into the joints of naïve mice. HMGB1 is actively released from immune cells in response to TNFα; once released, HMGB1 in turn induces production of several proinflammatory cytokines – including IL-6 and TNFα – by macrophages. Whether HMGB1-induced arthritis is mediated via the TNFα pathway, however, is unknown. The purpose of the present study was to investigate whether the arthritis-inducing effect of HMGB1 is dependent on TNFα expression in vivo and to assess whether TNFα deficiency affects a proinflammatory cytokine response to HMGB1 in vitro.

Methods

TNFα knockout mice and backcrossed control animals on a C57Bl6 background were injected intraarticularly with 5 μg HMGB1. Joints were dissected 3 days after intraarticular injection and were evaluated histologically by scoring the frequency and severity of arthritis. For in vitro studies, mouse spleen cultures from TNFα knockout mice and from control mice were incubated with different doses of HMGB1, and cell culture supernatants were collected at different time points for analysis of IL-6.

Results

Intraarticular injection of HMGB1 into healthy mouse joints resulted in an overall frequency of 32% to 39% arthritic animals. No significant differences were found with respect to the severity and incidence of synovitis between mice deficient for TNFα (seven out of 18 mice with arthritis) in comparison with control TNFα+/+ animals (six out of 19). No significant differences were detected between spleen cells from TNFα+/+ mice versus TNFα-/- mice regarding IL-6 production upon stimulation with highly purified HMGB1 after 24 hours and 48 hours. Upon stimulation with a suboptimal dose of recombinant HMGB1, however, the splenocytes from TNFα+/+ animals released significantly more IL-6 than cells from the knockout mice (602 ± 112 pg/ml and 304 ± 50 pg/ml, respectively; P < 0.05).

Conclusion

Our data show that HMGB1-triggered joint inflammation is not mediated via the TNF pathway. Combined with our previous study, we suggest that HMGB1-triggered arthritis is probably mediated through IL-1 activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号