首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   29篇
  国内免费   32篇
  2023年   4篇
  2022年   11篇
  2021年   8篇
  2020年   7篇
  2019年   5篇
  2018年   4篇
  2017年   7篇
  2016年   10篇
  2015年   21篇
  2014年   23篇
  2013年   25篇
  2012年   44篇
  2011年   37篇
  2010年   19篇
  2009年   23篇
  2008年   26篇
  2007年   22篇
  2006年   21篇
  2005年   20篇
  2004年   15篇
  2003年   14篇
  2002年   17篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1986年   2篇
  1982年   4篇
排序方式: 共有416条查询结果,搜索用时 15 毫秒
1.
2.
记述中国西北地区东鳖甲属2新种:巴丹东鳖甲A.badainica Ba,Ren&Liu sp.nov.和古尔班东鳖甲A.gurbantunggutica Ba&Ren sp.nov.,提供了主要鉴别特征和形态图,并简要讨论了其昼夜活动规律.  相似文献   
3.
ABSTRACT

Introduction: Skeletal muscle is the major site of insulin-stimulated glucose uptake and imparts the beneficial effects of exercise, and hence is an important site of insulin resistance in obesity and type 2 diabetes (T2D). Despite extensive molecular biology-oriented research the molecular mechanisms underlying insulin resistance in skeletal muscle remain to be established.

Areas covered: The proteomic capabilities have greatly improved over the last decades. This review summarizes the technical challenges in skeletal muscle proteomics studies as well as the results of quantitative proteomic studies of skeletal muscle in relation to obesity, T2D, and exercise.

Expert commentary: Current available proteomic studies contribute to the view that insulin resistance in obesity and T2D is associated with increased glycolysis and reduced mitochondrial oxidative metabolism in skeletal muscle, and that the latter can be improved by exercise. Future proteomics studies should be designed to markedly intensify the identification of abnormalities in metabolic and signaling pathways in skeletal muscle of insulin-resistant individuals to increase the understanding of the pathogenesis of T2D, but more importantly to identify multiple novel targets of treatment of which at least some can be safely targeted by novel drugs to treat and prevent T2D and reduce risk of cardiovascular disease.  相似文献   
4.
The dominant glutamate transporter isoform in the mammalian brain, GLT1, exists as at least three splice variants, GLT1a, GLT1b, and GLT1c. GLT1b interacts with the scaffold protein PICK1 (protein interacting with kinase C1), which is implicated in glutamatergic neurotransmission via its regulatory effect on trafficking of AMPA-type glutamate receptors. The 11 extreme C-terminal residues specific for the GLT1b variant are essential for its specific interaction with the PICK1 PDZ domain, but a functional consequence of this interaction has remained unresolved. To identify a functional effect of PICK1 on GLT1a or GLT1b separately, we employed the Xenopus laevis expression system. GLT1a and GLT1b displayed similar electrophysiological properties and EC50 for glutamate. Co-expressed PICK1 localized efficiently to the plasma membrane and resulted in a 5-fold enhancement of the leak current in GLT1b-expressing oocytes with only a minor effect on [3H]glutamate uptake. Three different GLT1 substrates all caused a slow TBOA-sensitive decay in the membrane current upon prolonged application, which provides support for the leak current being mediated by GLT1b itself. Leak and glutamate-evoked currents in GLT1a-expressing oocytes were unaffected by PICK1 co-expression. PKC activation down-regulated GLT1a and GLT1b activity to a similar extent, which was not affected by co-expression of PICK1. In conclusion, PICK1 may not only affect glutamatergic neurotransmission by its regulatory effect on glutamate receptors but may also affect neuronal excitability via an increased GLT1b-mediated leak current. This may be particularly relevant in pathological conditions such as amyotrophic lateral sclerosis and cerebral hypoxia, which are associated with neuronal GLT1b up-regulation.  相似文献   
5.
A total of 36 mink dams and their litters of 3, 6 or 9 kits were used for determination of milk intake of the suckling young by means of deuterium dilution technique, and chemical composition of milk and of kit bodies. Measurements were performed during lactation weeks 1?–?4, each week with 3 dams with each litter size. Milk intake was determined over a 48?h measurement period, and by the end of this milk samples were collected and 2 kits (litters of 6 and 9) or 1 kit per litter (litters of 3) were killed for body chemical composition. Based on the results, different models were applied for calculation of the energetic efficiency of milk. Dam milk yield increased steadily from week 1 until week 3 but only slightly from week 3 to 4. The increase declined with increasing litter size, and for dams suckling 9 kits the increment from week 3 to week 4 was only 2?g. The dry matter content of milk increased significantly as lactation progressed, being reflected in crude protein increasing from 6.9% in lactation week 1 to 8.1% in week 4. Milk fat increased concomitantly from 5.6% to 8.0%. In kit bodies, crude protein content increased from 9.4% in week 1 to about 12% in weeks 3 and 4. Body fat content increased from week 1 (4.1%) to week 3 (8.4%) and then declined in week 4 (7.1%). Animals suckled in litters of 3 kits had the highest milk intake and live weight and kits suckled in litters of 9 had the lowest milk intake, live weight and daily gain. In terms of milk intake per g gain kits in litters of 6 were the most efficient, with 4.1?g milk per g body gain. The metabolizable energy requirement for maintenance (MEm) was estimated to 448 kJ/kg0.75 and the efficiency of utilization of ME for body gain (kg) to 0.67, the estimates being higher (MEm) or in good agreement with previous findings (kg) in suckling mink kits.  相似文献   
6.
7.
Re-examination, using molecular tools, of the diversity of haemosporidian parasites (among which the agents of human malaria are the best known) has generally led to rearrangements of traditional classifications. In this study, we explored the diversity of haemosporidian parasites infecting vertebrate species (particularly mammals, birds and reptiles) living in the forests of Gabon (Central Africa), by analyzing a collection of 492 bushmeat samples. We found that samples from five mammalian species (four duiker and one pangolin species), one bird and one turtle species were infected by haemosporidian parasites. In duikers (from which most of the infected specimens were obtained), we demonstrated the existence of at least two distinct parasite lineages related to Polychromophilus species (i.e., bat haemosporidian parasites) and to sauropsid Plasmodium (from birds and lizards). Molecular screening of sylvatic mosquitoes captured during a longitudinal survey revealed the presence of these haemosporidian parasite lineages also in several Anopheles species, suggesting a potential role in their transmission. Our results show that, differently from what was previously thought, several independent clades of haemosporidian parasites (family Plasmodiidae) infect mammals and are transmitted by anopheline mosquitoes.  相似文献   
8.
Voltage‐gated sodium channels are essential for electrical signalling across cell membranes. They exhibit strong selectivities for sodium ions over other cations, enabling the finely tuned cascade of events associated with action potentials. This paper describes the ion permeability characteristics and the crystal structure of a prokaryotic sodium channel, showing for the first time the detailed locations of sodium ions in the selectivity filter of a sodium channel. Electrostatic calculations based on the structure are consistent with the relative cation permeability ratios (Na+ ≈ Li+ ≫ K+, Ca2+, Mg2+) measured for these channels. In an E178D selectivity filter mutant constructed to have altered ion selectivities, the sodium ion binding site nearest the extracellular side is missing. Unlike potassium ions in potassium channels, the sodium ions in these channels appear to be hydrated and are associated with side chains of the selectivity filter residues, rather than polypeptide backbones.  相似文献   
9.
BackgroundConflicting results have been reported concerning possible adverse effects on the cognitive function of offspring of mothers with type 1 diabetes (O-mT1D). Previous studies have included offspring of parents from the background population (O-BP), but not offspring of fathers with type 1 diabetes (O-fT1D) as the unexposed reference group.Methods and findingsThis is a population-based retrospective cohort study from 2010 to 2016. Nationally standardized school test scores (range, 1 to 100) were obtained for public school grades 2, 3, 4, 6, and 8 in O-mT1D and compared with those in O-fT1D and O-BP. Of the 622,073 included children, 2,144 were O-mT1D, and 3,474 were O-fT1D. Multiple linear regression models were used to compare outcomes, including the covariates offspring with type 1 diabetes, parity, number of siblings, offspring sex, smoking during pregnancy, parental age, and socioeconomic factors. Mean test scores were 54.2 (standard deviation, SD 24.8) in O-mT1D, 54.4 (SD 24.8) in O-fT1D, and 56.4 (SD 24.7) in O-BP. In adjusted analyses, the mean differences in test scores were −1.59 (95% CI −2.48 to −0.71, p < 0.001) between O-mT1D and O-BP and −0.78 (95% CI −1.48 to −0.08, p = 0.03) between O-fT1D and O-BP. No significant difference in the adjusted mean test scores was found between O-mT1D and O-fT1D (p = 0.16). The study’s limitation was no access to measures of glycemic control during pregnancy.ConclusionsO-mT1D achieved lower test scores than O-BP but similar test scores compared with O-fT1D. Glycemic control during pregnancy is essential to prevent various adverse pregnancy outcomes in women with type 1 diabetes. However, the present study reduces previous concerns regarding adverse effects of in utero hyperglycemia on offspring cognitive function.

Anne Lærke Spangmose and colleagues examine the association between school performance and exposure to maternal or paternal type 1 diabetes in utero in Denmark.  相似文献   
10.
The set of LXS recombinant inbred (RI) strains is a new and exceptionally large mapping panel that is suitable for the analysis of complex traits with comparatively high power. This panel consists of 77 strains—more than twice the size of other RI sets— and will typically provide sufficient statistical power (=0.8) to map quantitative trait loci (QTLs) that account for 25% of genetic variance with a genomewide p < 0.05. To characterize the genetic architecture of this new set of RI strains, we genotyped 330 MIT microsatellite markers distributed on all autosomes and the X Chromosome and assembled error-checked meiotic recombination maps that have an average F2-adjusted marker spacing of 4 cM. The LXS panel has a genetic structure consistent with random segregation and subsequent fixation of alleles, the expected 3–4 × map expansion, a low level of nonsyntenic association among loci, and complete independence among all 77 strains. Although the parental inbred strains—Inbred Long-Sleep (ILS) and Inbred Short-Sleep (ISS)—were derived originally by selection from an 8-way heterogeneous stock selected for differential sensitivity to sedative effects of ethanol, the LXS panel is also segregating for many other traits. Thus, the LXS panel provides a powerful new resource for mapping complex traits across many systems and disciplines and should prove to be of great utility in modeling the genetics of complex diseases in human populations.(Robert W. Williams and Beth Bennett)These authors contributed equally to this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号