首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   18篇
  440篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   9篇
  2018年   13篇
  2017年   3篇
  2016年   13篇
  2015年   7篇
  2014年   16篇
  2013年   22篇
  2012年   22篇
  2011年   27篇
  2010年   19篇
  2009年   28篇
  2008年   31篇
  2007年   45篇
  2006年   31篇
  2005年   27篇
  2004年   28篇
  2003年   22篇
  2002年   30篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1983年   1篇
  1957年   1篇
  1918年   1篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
1.
Galectin-9 (Gal-9) is a tandem-repeat-type member of the galectin family associated with diverse biological processes, such as apoptosis, cell aggregation, and eosinophil chemoattraction. Although the detailed sugar-binding specificity of Gal-9 has been elucidated, molecular mechanisms that underlie these functions remain to be investigated. During the course of our binding study by affinity chromatography and surface plasmon resonance (SPR) analysis, we found that human Gal-9 interacts with immobilized Gal-9 in the protein-protein interaction mode. Interestingly, this intermolecular interaction strongly depended on the activity of the carbohydrate recognition domain (CRD), because the addition of potent saccharide inhibitors abolished the binding. The presence of multimers was also confirmed by Ferguson plot analysis of result of polyacrylamide gel electrophoresis and matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Moreover, this intermolecular interaction was observed between Gal-9 and other galectin members, such as Gal-3 and Gal-8, but not Gal-1. Because such properties have not been reported yet, they may explain an unidentified mechanism underlying the diverse functions of Gal-9.  相似文献   
2.
Syntrophins are components of the dystrophin glycoprotein complex (DGC), which is encoded by causative genes of muscular dystrophies. The DGC is thought to play roles not only in linking the actin cytoskeleton to the extracellular matrix, providing stability to the cell membrane, but also in signal transduction. Because of their binding to a variety of different molecules, it has been suggested that syntrophins are adaptor proteins recruiting signaling proteins to membranes and the DGC. However, critical roles in vivo remain elusive. Drosophila Syntrophin-2 (Syn2) is an orthologue of human γ1/γ2-syntrophins. Western immunoblot analysis here showed Syn2 to be expressed throughout development, with especially high levels in the adult head. Morphological aberrations were observed in Syn2 knockdown adult flies, with lack of retinal elongation and malformation of rhabdomeres. Furthermore, Syn2 knockdown flies exhibited excessive apoptosis in third instar larvae and alterations in the actin localization in the pupal retinae. Genetic crosses with a collection of Drosophila deficiency stocks allowed us to identify seven genomic regions, deletions of which caused enhancement of the rough eye phenotype induced by Syn2 knockdown. This information should facilitate identification of Syn2 regulators in Drosophila and clarification of roles of Syn2 in eye development.  相似文献   
3.
During chick liver development, the liver bud arises from the foregut, invaginates into the septum transversum, and elongates along and envelops the ductus venosus. However, the mechanism of liver bud migration is only poorly understood. Here, we demonstrate that a GDNF family ligand involved in neuronal outgrowth and migration, neurturin (NRTN), and its receptor, GFRalpha2, are essential for liver bud migration. In the chick embryo, we found that GFRalpha2 was expressed in the liver bud and that NRTN was expressed in the endothelial cells of the ductus venosus. Inhibition of GFRalpha2 signaling suppressed liver bud elongation along the ductus venous without affecting cell proliferation and apoptosis. Moreover, ectopic expression of NRTN perturbed the directional migration along the ductus venosus, leading to splitting or ectopic branching of the liver. We showed that liver buds selectively migrated toward an NRTN-soaked bead in vitro. These data represent a new model for liver bud migration: NRTN secreted from endothelial cells functions as a chemoattractant to direct the migration of the GFRalpha2-expressing liver bud in early liver development.  相似文献   
4.
Septins, a conserved family of GTP/GDP-binding proteins, are present in organisms as diverse as yeast and mammals. We analyzed the distribution of five septins, Sept6, Sept7, Sept8, Sept9 and Sept11, in various rat tissues by western blot analyses and found all septins to be expressed in brain. We also examined the developmental changes of expression of these septins in the rat brain and found that the level of Sept8 increased during post-natal development. Morphological analyses revealed that Sept8 is enriched at pre-synapses. Using yeast two-hybrid screening, we identified vesicle-associated membrane protein 2 (VAMP2), a soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE), as an interacting protein for Sept8. Synaptophysin is reported to associate with and recruit VAMP2 to synaptic vesicles and dissociate prior to forming the SNARE complex consisting of VAMP2, syntaxin and synaptosome-associated protein of 25 kDa. We showed that Sept8 suppresses the interaction between VAMP2 and synaptophysin through binding to VAMP2. In addition, we found that Sept8 forms a complex with syntaxin1A, and the Sept8-VAMP2 interaction is disrupted by synaptosome-associated protein of 25 kDa. These results suggest that Sept8 may participate in the process of the SNARE complex formation and subsequent neurotransmitter release.  相似文献   
5.
We developed a technique for detecting the heat-labile I (LTI) and heat-stable I (STI) genes of enterotoxigenic Escherichia coli (ETEC) using a novel DNA amplification procedure designated Loop-Mediated Isothermal Amplification (LAMP). The detection limit of accelerated LAMP utilizing loop primers was 4 CFU/test for LTI and was 40 CFU/test for STI, which are 10-fold higher than those of conventional PCR assay (detection limit, 40 CFU/test and 400 CFU/test, respectively). No DNA amplification was observed in LT and ST non-producing E. coli or other bacterial strains; thus, high specificity was verified. The specificity of LAMP assay was also confirmed by digestion of LAMP products using restriction enzymes and DNA sequence analysis. In the accelerated LAMP assay, DNA amplification was detected within 35 min, and thus LAMP is superior to conventional PCR in terms of rapidity. It was confirmed that increased concentrations of primers and Bst DNA polymerase could further facilitate the reaction. Furthermore, with the high amplification efficiency of the LAMP assay, amplification can be visually observed by the turbidity caused by magnesium pyrophosphate, a byproduct of the reaction. Detection of LTI and STI in ETEC by LAMP is thus an extremely rapid procedure with high sensitivity and specificity that requires no specialized equipment. This assay is expected to become a valuable tool for rapid diagnosis in ETEC infection.  相似文献   
6.
Diverticular disease of the colon was detected in a female Japanese monkey by X-ray examination. The monkey was 15 years old and had been kept under captive conditions for nine years. Lack of appetite and activity, and constipation were observed. The monkey was given fiber-rich vegetables and wild plants, and its appetite and activity then improved. Based on a consideration of various factors, it is suggested that one possible cause of the diverticulosis in this case was a low dietary fiber intake.  相似文献   
7.
To improve cancer immunotherapy, it is important to understand how tumor cells counteract immune-surveillance. In this study, we sought to identify cell-surface molecules associated with resistance of leukemia cells to cytotoxic T cell (CTL)-mediated cytolysis. To this end, we first established thousands of monoclonal antibodies (mAbs) that react with MLL/AF9 mouse leukemia cells. Only two of these mAbs, designated R54 and B2, bound preferentially to leukemia cells resistant to cytolysis by a tumor cell antigen–specific CTLs. The antigens recognized by these mAbs were identified by expression cloning as the same protein, CD43, although their binding patterns to subsets of hematopoietic cells differed significantly from each other and from a pre-existing pan-CD43 mAb, S11. The epitopes of R54 and B2, but not S11, were sialidase-sensitive and expressed at various levels on leukemia cells, suggesting that binding of R54 or B2 is associated with the glycosylation status of CD43. R54high leukemia cells, which are likely to express sialic acid-rich CD43, were highly resistant to CTL-mediated cytolysis. In addition, loss of CD43 in leukemia cells or neuraminidase treatment of leukemia cells sensitized leukemia cells to CTL-mediated cell lysis. These results suggest that sialic acid-rich CD43, which harbors multiple sialic acid residues that impart a net negative surface charge, protects leukemia cells from CTL-mediated cell lysis. Furthermore, R54high or B2high leukemia cells preferentially survived in vivo in the presence of adaptive immunity. Taken together, these results suggest that the glycosylation status of CD43 on leukemia is associated with sensitivity to CTL-mediated cytolysis in vitro and in vivo. Thus, regulation of CD43 glycosylation is a potential strategy for enhancing CTL-mediated immunotherapy.  相似文献   
8.
Three protein disulfide isomerases from Haemaphysalis longicornis ticks (designated as HlPDI-1, HlPDI-2, and HlPDI-3) were previously identified. In order to further analyze their biological functions, the dsRNA of each HlPDI gene and one dsRNA combination of HlPDI-1/HlPDI-3 were separately injected into female ticks. Reduction of gene and protein expression of HlPDIs by RNA interference (RNAi) was demonstrated by real-time PCR, RT-PCR and Western blot analysis. In single dsRNA-injected groups, HlPDI-1 RNAi impacted tick blood feeding and oviposition, HlPDI-2 RNAi impacted tick viability and HlPDI-3 RNAi had no significant impact by itself. However, the injection of a combination of HlPDI-1/HlPDI-3 dsRNA had synergistic effects on tick viability. Furthermore, the midgut and cuticle were severely damaged in HlPDI-2 dsRNA-injected ticks and HlPDI-1/HlPDI-3 dsRNA-injected ticks, respectively, and disruption of HlPDI genes led to a significant reduction of disulfide bond-containing vitellogenin (Vg) expression in ticks. These results indicate that PDIs from H. longicornis are involved in blood feeding, viability and oocyte development, probably by mediating the formation of disulfide bond-containing proteins of the ticks and the formation of basement membrane and cuticle components such as extracellular matrix (ECM). This is the first report on the functional analysis of PDI family molecules as well as the interactions of PDI and other molecules in blood-feeding arthropods.  相似文献   
9.
Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. In this paper, we show that human α-defensin-5 displays a parasiticidal role against Toxoplasma gondii, the causative agent of toxoplasmosis. Exposure of the tachyzoite form of T. gondii to defensin induced aggregation and significantly reduced parasite viability in a concentration-dependent peptide. Pre-incubation of tachyzoites with human α-defensin-5 followed by exposure to a mouse embryonal cell line (NIH/3T3) significantly reduced T. gondii infection in these cells. Thus, human α-defensin-5 is an innate immune molecule that causes severe toxocity to T. gondii and plays an important role in reducing cellular infection. This is the first report showing that human α-defensin-5 causes aggregation, leading to Toxoplasma destruction.  相似文献   
10.
Electroporation is the most widely used transfection method for delivery of cell-impermeable molecules into cells. We developed a novel gene transfection method, water-in-oil (W/O) droplet electroporation, using dielectric oil and an aqueous droplet containing mammalian cells and transgene DNA. When a liquid droplet suspended between a pair of electrodes in dielectric oil is exposed to a DC electric field, the droplet moves between the pair of electrodes periodically and droplet deformation occurs under the intense DC electric field. During electrostatic manipulation of the droplet, the local intense electric field and instantaneous short circuit via the droplet due to droplet deformation facilitate gene transfection. This method has several advantages over conventional transfection techniques, including co-transfection of multiple transgene DNAs into even as few as 103 cells, transfection into differentiated neural cells, and the capable establishment of stable cell lines. In addition, there have been improvements in W/O droplet electroporation electrodes for disposable 96-well plates making them suitable for concurrent performance without thermal loading by a DC electric field. This technique will lead to the development of cell transfection methods for novel regenerative medicine and gene therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号