首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  37篇
  2019年   1篇
  2015年   1篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1978年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
Propofol (2,6-diisopropylphenol), some substituted phenols (2,6-dimethylphenol and 2,6-ditertbutylphenol) and their 4-nitrosoderivatives have been compared for their scavenging ability towards 1,1-diphenyl-2-picrylhydrazyl and for their inhibitory action on lipid peroxidation. These products were also compared to the classical antioxidants butylated hydroxytoluene and butylated hydroxyanisole. When measuring the reactivity of the various phenolic derivatives with 1,1-diphenyl-2-picrylhydrazyl the following order of effectiveness was observed: butylated hydroxyanisole>propofol>2,6-dimethylphenol>2,6-di-tertbutylphenol?>?butylated hydroxytoluene. In cumene hydroperoxide-dependent microsomal lipid peroxidation, propofol acts as the most effective antioxidant, while butylated hydroxyanisole, 2,6-di-tertbutylphenol and butylated hydroxytoluene exhibit a rather similar effect, although lower than propofol. In the iron/ascorbate-dependent lipid peroxidation propofol, at concentrations higher than 10?μM, exhibits antioxidant properties comparable to those of butylated hydroxytoluene and butylated hydroxyanisole. 2,6-Dimethylphenol is scarcely effective in both lipoperoxidative systems. The antioxidant properties of the various molecules depend on their hydrophobic characteristics and on the steric and electronic effects of their substituents. However, the introduction of the nitroso group in the 4-position almost completely removes the antioxidant properties of the examined compounds. The nitrosation of the aromatic ring of antioxidant molecules and the consequent loss of antioxidant capacity can be considered a condition potentially occurring in vivo since nitric oxide and its derivatives are continuously formed in biological systems.  相似文献   
2.
The biological functions of myotonic dystrophy protein kinase (DMPK), a serine/threonine kinase whose gene mutations cause myotonic dystrophy type 1 (DM1), remain poorly understood. Several DMPK isoforms exist, and the long ones (DMPK-A/B/C/D) are associated with the mitochondria, where they exert unknown activities. We have studied the isoform A of DMPK, which we have found to be prevalently associated to the outer mitochondrial membrane. The kinase activity of mitochondrial DMPK protects cells from oxidative stress and from the ensuing opening of the mitochondrial permeability transition pore (PTP), which would otherwise irreversibly commit cells to death. We observe that DMPK (i) increases the mitochondrial localization of hexokinase II (HK II), (ii) forms a multimeric complex with HK II and with the active form of the tyrosine kinase Src, binding its SH3 domain and (iii) it is tyrosine-phosphorylated by Src. Both interaction among these proteins and tyrosine phosphorylation of DMPK are increased under oxidative stress, and Src inhibition selectively enhances death in DMPK-expressing cells after HK II detachment from the mitochondria. Down-modulation of DMPK abolishes the appearance of muscle markers in in vitro myogenesis, which is rescued by oxidant scavenging. Our data indicate that, together with HK II and Src, mitochondrial DMPK is part of a multimolecular complex endowed with antioxidant and pro-survival properties that could be relevant during the function and differentiation of muscle fibers.  相似文献   
3.
Marian  M.  Bindoli  A.  Callegarin  F.  Rigobello  M. P.  Vincenti  E.  Bragadin  M.  Scutari  G. 《Neurochemical research》1999,24(7):875-881
The effect of 2,6-diisopropylphenol (propofol) in comparison to that of the halogenated anesthetics enflurane, isoflurane, and halothane on tetrapenylphosphonium uptake by rat brain synaptosomes was studied. A direct method to separately measure the synaptosomal and the mitochondrial transmembrane potential by using the tetraphenylphosphonium cation (TPP+) was utilized. The latter is a lipophylic charged molecule which distributes between two compartments according to the transmembrane electrical potential in the presence or absence of 60 mM KCl as a synaptosomal membrane depolarizing agent. After previously reporting the damages induced by general anesthetics on isolated mitochondria, the aim of this paper was to study their possible action on the synaptosomal membrane potential and whether or not drugs concentrations damaging isolated mitochondria are also effective on synaptosomal mitochondria. The results indicated that, in the presence of glucose, mitochondria included in synaptosomes were able to maintain a transmembrane potential of 202 ± 8 mV (mean ± SD) while the synaptosomal membrane showed a potential of 78 ± 8 mV (mean ± SD). When anesthetic concentrations (0.6–1 mM propofol, 10–40 M enflurane, 30–50 M isoflurane, 8–15 M halothane) that impair mitochondrial energy metabolism were used, the synaptosomal transmembrane potential was maintained and, in addition, a slight increase of the TPP+ taken up was observed as the anesthetic concentration was increased.  相似文献   
4.
The effects of gold(I) complexes (auranofin, triethylphosphine gold and aurothiomalate), gold(III) complexes ([Au(2,2'-diethylendiamine)Cl]Cl(2), [(Au(2-(1,1-dimethylbenzyl)-pyridine) (CH(3)COO)(2)], [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine)(OH)](PF(6)), [Au(bipy(dmb)-H)(2,6-xylidine)](PF(6))), metal ions (zinc and cadmium acetate) and metal complexes (cisplatin, zinc pyrithione and tributyltin) on mitochondrial thioredoxin reductase and mitochondrial functions have been examined. Both gold(I) and gold(III) complexes are extremely efficient inhibitors of thioredoxin reductase showing IC(50) ranging from 0.020 to 1.42 microM while metal ions and complexes not containing gold are less effective, exhibiting IC(50) going from 11.8 to 76.0 microM. At variance with thioredoxin reductase, auranofin is completely ineffective in inhibiting glutathione peroxidase and glutathione reductase, while gold(III) compounds show some effect on glutathione peroxidase. The mitochondrial respiratory chain is scarcely affected by gold compounds while the other metal complexes and metal ions, in particular zinc ion and zinc pyrithione, show a more marked inhibitory effect that is reflected on a rapid induction of membrane potential decrease that precedes swelling. Therefore, differently from gold compounds, the various metal ions and metal complexes exert their effect on different targets indicating a lower specificity. It is concluded that gold compounds are highly specific inhibitors of mitochondrial thioredoxin reductase and this action influences other functions such as membrane permeability properties. Metal ions and metal complexes markedly inhibit the activity of thioredoxin reductase although to an extent lower than that of gold compounds. They also inhibit mitochondrial respiration, decrease membrane potential and, finally, induce swelling.  相似文献   
5.
The transport mechanism of aluminum in lysosomes extracted from rat liver has been investigated in this paper. The experimental evidence supports the hypothesis that aluminum is transported inside lysosomes in the form of an Al(OH)(3) electroneutral compound, the driving force being the internal acidic pH. This mechanism could help to explain the presence of aluminum in cells in many illnesses.  相似文献   
6.
The antioxidant systems of mitochondria are not well known. Using a proteomics-based approach, we defined these mitochondrial antioxidant systems and analyzed their response to oxidative stress. It appears that the major mitochondrial antioxidant system is made of manganese superoxide dismutase on the one hand, and of peroxiredoxin III, mitochondrial thioredoxin and mitochondrial thioredoxin reductase on the other hand. With the exception of thioredoxin reductase, all these proteins are induced by oxidative stress. In addition, a change in the peroxiredoxin III pattern can also be observed.  相似文献   
7.
In rat heart mitochondria, auranofin, arsenite, diamide, and BCNU increase H2O2 formation, further stimulated by antimycin. However, in submitochondrial particles, H2O2 formation and oxygen uptake are not affected, indicating that these substances do not alter respiration. Mitochondria are also able to rapidly metabolize added H2O2 in a process partially prevented by BCNU or auranofin. Calcium does not modify the production of H2O2 and the mitochondrial thioredoxin system is not affected by calcium ions. Auranofin, arsenite, and diamide determine a large mitochondrial permeability transition, while BCNU and acetoacetate are ineffective. Thiols and glutathione are modified only by BCNU and diamide. However, all the compounds tested cause the release of cytochrome c that occurs also in the absence of mitochondrial swelling. In conclusion, the compounds utilized share the common feature of shifting the mitochondrial thiol-linked redox balance towards a more oxidized condition that is responsible of the observed effects.  相似文献   
8.
This study aims at elucidating the mechanism of action of extracellular fructose-1,6-diphosphate (FDP). FDP is able to inhibit Ca++ entry into the myocardial tissue with an IC50 value of 11.5 mM and in addition, it is bound by rat heart slices, the binding being activated by Zn and conditions of chemical hypoxia induced by KCN and iodoacetate. The overall effect of extracellular FDP includes an increase of frequency and amplitude of contraction of perfused heart at concentration below 1 mM, and, in general, a stimulation of the oxygen consumption of the tissue. The antihaemolytic effect of FDP suggests its action as a membrane stabilizer. The effects of extracellular FDP on the myocardial cell can be interpreted both on the basis of a limited permeability of the cell membrane to it and as a purely extracellular effect transduced through the cell membrane with a final response consisting of an increase in the intracellular FDP.  相似文献   
9.
The antioxidant properties of S -nitrosoglutathione, a nitric oxide-derived product were studied in different experimental systems. By using the crocin bleaching test, S -nitrosoglutathione, in the presence of copper ions, shows an antioxidant capacity about six times higher than that of Trolox c and referable to the interception of peroxyl radicals by nitric oxide. Copper alone shows a modest inhibitory action, which is about seven times lower than that of Trolox c. S -nitrosoglutathione prevents lipid peroxidation induced by the well-known Fe 2+ /ascorbate system (IC 50 =450 &#119 M) and the inhibitory effect is strongly reinforced by the presence of copper ions (IC 50 =6.5 &#119 M). In addition, cumene hydroperoxide-induced lipid peroxidation is markedly decreased by S -nitrosoglutathione, provided that copper ions, maintained reduced by ascorbate, are present. Decomposition of S -nitrosoglutathione through metal catalysis and/or the presence of reducing agents and the consequent release of nitric oxide are of crucial importance for eliciting the antioxidant power. In this way, copper ions and/or reducing species with low antioxidant potency are able to promote the formation of an extremely strong antioxidant species such as nitric oxide.  相似文献   
10.
The effect of the neurotoxicant, 1-methyl-4-phenylpyridinium ion (MPP+) on acetylcholinesterase (AchE) activity was investigated. The MPP+ was found to inactivate the enzyme in a dose dependent manner. The kinetic parameter, Km for the substrate (acetylthiocholine), was found to be 0.216 mM and Ki for MPP+ for the inactivation of AChE was found to be 0.197 mM. It was found that MPP+ is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate inactivation of AChE to be a linear mixed-type inhibition. The inactivation of AChE by MPP+ was partially recovered by either dilution or gel exclusion chromatography. These data suggest that once MPP+ enters the basal ganglia of the brain, it can inactivate the AChE and thereby increase the acetylcholine level in the basal ganglia, leading to potential cell dysfunction. It appears likely that the nigrostriatal toxicity by MPP+ leading to Parkinson's disease-like syndrome may, in part, be mediated via the AChE inactivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号