首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   17篇
  国内免费   3篇
  432篇
  2023年   4篇
  2022年   7篇
  2021年   17篇
  2020年   12篇
  2019年   12篇
  2018年   23篇
  2017年   8篇
  2016年   24篇
  2015年   27篇
  2014年   32篇
  2013年   40篇
  2012年   46篇
  2011年   22篇
  2010年   18篇
  2009年   16篇
  2008年   22篇
  2007年   25篇
  2006年   21篇
  2005年   12篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有432条查询结果,搜索用时 0 毫秒
1.
Heteromazocraes mamaevi n. sp. is described from a cyprinid, Securicula gora (Ham.) from the Lucknow district, India. It is characterised by well-developed cephalic glands, the shape of the genital spines, the structure of the egg and the shape of the clamp sclerites. This is the first record of the genus Heteromazocraes Mamaev, 1981 from a cyprinid fish.  相似文献   
2.
Summary Components of generation means were partitioned for days to flower initiation and maturity in three crosses of Indian mustard (Brassica juncea (L.) Czern and Coss) cultivars. A linked digenics model was adequate for flowering in cross II and maturity in Cross I. All three types of digenic interactions among the linked pairs of genes, additive X additive (i), additive X dominance (j) and dominance X dominance (1), contributed significantly in the inheritance of flowering in cross II and maturity in cross I. A complete association among the genes of greater effects in higher mean parent was detected for flowering in cross II and maturity in Cross I. Duplicate epistasis was evident for flowering in Crosses I and II and maturity in Crosses I and III.Inadequacy of all the fitted models for days to flowering in Cross III and maturity in Cross II indicated the presence of higher order interactions.Part of PhD (plant breeding) Thesis, submitted by senior author to GBPUAT, Pantnagar (Nainital) U.P., India (unpublished). Research paper No. 4262  相似文献   
3.
4.
Efficient plant regeneration via somatic embryogenesis has been developed in chickpea cultivar C235. Leaf explants, on MS medium supplemented with 1.25 mg/l 2,4-D and 0.25 mg/l kinetin, yielded somatic embryos with high efficiency during dark incubation. MS medium supplemented with B5 vitamins, 0.125 mg/l IBA and 2 mg/l BAP was found suitable for embryo maturation. The well formed embryos germinated into plantlets on basal B5 medium supplemented with 0.25 mg/l BAP. Further development into healthy plantlets was obtained on basal B5 medium. Hardened plantlets produced normal, fertile plants upon transfer to soil.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-Benzyl-aminopurine - IAA IndoIe-3-acetic acid - IBA Indole-3-butyric acid - NAA 1-Naphthalene acetic acid - Kinetin 6-furfuryl aminopurine - Zeatin 6-(4-hydroxy-3-methylbut-2-enylamino)-purine  相似文献   
5.
Summary In a pot culture experiment, the influence of soil moisture stress at different physiological stages of soybean, cv. Hark, on nodulation, symbiosis and nitrogen accumulation was studied. Moisture stress reduced leghemoglobin content of root nodules and nitrogen uptake by plants. It had no effect on number of bacteroids. Stress at mid bloom and rapid pod filling stages reduced yield and seed protein content. However, these parameters were not affected by stress at nodule initiation and early flowering stages, though, flower initiation and maturity of the plant were delayed. Moisture stress at any stage did not alter nitrogen status of roots.  相似文献   
6.
AIMS: To investigate the biotransformation of p-coumaric acid into p-hydroxybenzoic acid (p-HBA) by Paecilomyces variotii Bainier MTCC 6581. METHODS AND RESULTS: As a result of p-coumaric acid degradation by P. variotii, three phenolic metabolites, p-hydroxybenzaldehyde (p-HBAld), p-HBA and protocatechuic acid were formed. These phenolics were detected using TLC and HPLC. The identity of p-HBA and p-HBAld was further confirmed by mass spectrometry. Various analyses showed that 10.0 mmol l(-1) concentration of p-coumaric acid produced a maximum amount of p-hydroxybenzoic acid, 200 mg l(-1), into the medium at 37 degrees C with high-density cultures. CONCLUSIONS: A catabolic pathway of p-coumaric acid by the fungus P. variotii is suggested for the first time. During the process of p-coumaric acid degradation, p-HBA accumulated in the medium as the major degradation product. SIGNIFICANCE AND IMPACT OF THE STUDY: Microbial degradation of cinnamic acid and hydroxycinnamic acid has continued to be the focus of intensive study. The main goal was to identify the microbial species capable of converting these substances into commercially value-added products such as benzoic acid derivatives or aromatic aldehydes.  相似文献   
7.
Caloric restriction (CR) has positive effects on health and longevity. CR in mammals implements time‐restricted (TR) feeding, a short period of feeding followed by prolonged fasting. Periodic fasting, in the form of TR or mealtime, improves metabolism without reduction in caloric intake. In order to understand the relative contribution of reduced food intake and periodic fasting to the health benefits of CR, we compared physiological and metabolic changes induced by CR and TR (without reduced food intake) in mice. CR significantly reduced blood glucose and insulin around the clock, improved glucose tolerance, and increased insulin sensitivity (IS). TR reduced blood insulin and increased insulin sensitivity, but in contrast to CR, TR did not improve glucose homeostasis. Liver expression of circadian clock genes was affected by both diets while the mRNA expression of glucose metabolism genes was significantly induced by CR, and not by TR, which is in agreement with the minor effect of TR on glucose metabolism. Thus, periodic fasting contributes to some metabolic benefits of CR, but TR is metabolically different from CR. This difference might contribute to differential effects of CR and TR on longevity.  相似文献   
8.
Abstract

The study recommends the Artemisia nilagirica (Clarke) Pamp. essential oil (ANEO) as plant-based shelf-life enhancer of millets against fungal, aflatoxin B1 (AFB1) contamination and lipid peroxidation with favourable safety profile. Chemical characterisation of ANEO through GC-MS, recorded 1,5-heptadiene-4-one,3,3,6-trimethyl (32.72%)as the main compound, followed by Artemisia alcohol (13.40%), alpha lonone (4.55%), benzene, methyl (1-methylethyl) (2.97%) and 1-cyclohexene-1-carboxaldehyde,4-(1-methylethyenyl) (2.23%). The mycoflora analysis of millet samples showed Aspergillus flavus strain[LHP(R)-5] as the most AFB1 secreting strain. The ANEO inhibited growth and AFB1 production by the toxigenic strain at 1.4 and 1.0?µL?mL?1, respectively, and also possess broad fungitoxic spectrum. The decrement in membrane ergosterol content, enhanced leakage of cellular Ca2+, K+ and Mg2+ ions along with SEM and TEM study of ANEO-treated cell denotes plasma membrane as antifungal site of action. The ANEO also showed strong antioxidant activity as determined by DPPH? and ABTS?+ assays having IC50 value 2.51 and 1.07?µL?mL?1, respectively. More than 70.78% protection of Ragi samples from fungal contamination was observed during in situ trial. The ANEO showed favourable safety profile with high LD50 value (7528.10?µL?kg?1) for male mice and also exhibited non-phytotoxicity for Ragi seeds germination.  相似文献   
9.

The present study examined the anti-biofilm efficacy of two short-chain antimicrobial peptides (AMPs), namely, indolicidin and cecropin A (1-7)-melittin (CAMA) against biofilm-forming multidrug-resistant enteroaggregative Escherichia coli (MDR-EAEC) isolates. The typical EAEC isolates re-validated by PCR and confirmed using HEp-2 cell adherence assay was subjected to antibiotic susceptibility testing to confirm its MDR status. The biofilm-forming ability of MDR-EAEC isolates was assessed by Congo red binding, microtitre plate assays and hydrophobicity index; broth microdilution technique was employed to determine minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentrations (MBECs). The obtained MIC and MBEC values for both AMPs were evaluated alone and in combination against MDR-EAEC biofilms using crystal violet (CV) staining and confocal microscopy-based live/dead cell quantification methods. All the three MDR-EAEC strains revealed weak to strong biofilm-forming ability and were found to be electron-donating and weakly electron-accepting (hydrophobicity index). Also, highly significant (P < 0.001) time-dependent hydrodynamic growth of the three MDR-EAEC strains was observed at 48 h of incubation in Dulbecco’s modified Eagle’s medium (DMEM) containing 0.45% D-glucose. AMPs and their combination were able to inhibit the initial biofilm formation at 24 h and 48 h as evidenced by CV staining and confocal quantification. Further, the application of AMPs (individually and combination) against the preformed MDR-EAEC biofilms resulted in highly significant eradication (P < 0.001) at 24 h post treatment. However, significant differences were not observed between AMP treatments (individually or in combination). The AMPs seem to be an effective candidates for further investigations such as safety, stability and appropriate biofilm-forming MDR-EAEC animal models.

  相似文献   
10.

In the recent past, huge emphasis has been given to the epigenetic alterations of the genes responsible for the cause of neurological disorders. Earlier, the scientists believed somatic changes and modifications in the genetic makeup of DNA to be the main cause of the neurodegenerative diseases. With the increase in understanding of the neural network and associated diseases, it was observed that alterations in the gene expression were not always originated by the change in the genetic sequence. For this reason, extensive research has been conducted to understand the role of epigenetics in the pathophysiology of several neurological disorders including Alzheimer’s disease, Parkinson’s disease and, Huntington’s disease. In a healthy person, the epigenetic modifications play a crucial role in maintaining the homeostasis of a cell by either up-regulating or down-regulating the genes. Therefore, improved understanding of these modifications may provide better insight about the diseases and may serve as potential therapeutic targets for their treatment. The present review describes various epigenetic modifications involved in the pathology of Parkinson’s Disease (PD) backed by multiple researches carried out to study the gene expression regulation related to the epigenetic alterations. Additionally, we will briefly go through the current scenario about the various treatment therapies including small molecules and multiple phytochemicals potent enough to reverse these alterations and the future directions for a better management of PD.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号