首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2718篇
  免费   189篇
  国内免费   4篇
  2024年   6篇
  2023年   20篇
  2022年   86篇
  2021年   117篇
  2020年   126篇
  2019年   207篇
  2018年   173篇
  2017年   124篇
  2016年   149篇
  2015年   142篇
  2014年   188篇
  2013年   245篇
  2012年   238篇
  2011年   219篇
  2010年   135篇
  2009年   106篇
  2008年   95篇
  2007年   127篇
  2006年   88篇
  2005年   65篇
  2004年   58篇
  2003年   53篇
  2002年   45篇
  2001年   8篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   9篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1992年   6篇
  1991年   3篇
  1988年   5篇
  1987年   4篇
  1986年   10篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1977年   3篇
  1976年   1篇
  1975年   5篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1966年   2篇
排序方式: 共有2911条查询结果,搜索用时 546 毫秒
1.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
2.
Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. In 2012, a new human disease called Middle East respiratory syndrome (MERS) emerged in the Middle East. MERS was caused by a virus that was originally called human coronavirus-Erasmus Medical Center/2012 but was later renamed as Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV causes high fever, cough, acute respiratory tract infection, and multiorgan dysfunction that may eventually lead to the death of the infected individuals. The exact origin of MERS-CoV remains unknown, but the transmission pattern and evidence from virological studies suggest that dromedary camels are the major reservoir host, from which human infections may sporadically occur through the zoonotic transmission. Human to human transmission also occurs in healthcare facilities and communities. Recent studies on Middle Eastern respiratory continue to highlight the need for further understanding the virus-host interactions that govern disease severity and infection outcome. In this review, we have highlighted the major mechanisms of immune evasion strategies of MERS-CoV. We have demonstrated that M, 4a, 4b proteins and Plppro of MERS-CoV inhibit the type I interferon (IFN) and nuclear factor-κB signaling pathways and therefore facilitate innate immune evasion. In addition, nonstructural protein 4a (NSP4a), NSP4b, and NSP15 inhibit double-stranded RNA sensors. Therefore, the mentioned proteins limit early induction of IFN and cause rapid apoptosis of macrophages. MERS-CoV strongly inhibits the activation of T cells with downregulation of antigen presentation. In addition, uncontrolled secretion of interferon ɣ-induced protein 10 and monocyte chemoattractant protein-1 can suppress proliferation of human myeloid progenitor cells.  相似文献   
3.
Cataract is the major reason for human blindness worldwide. α-Crystallin, as a key chaperone of eye lenses, keeps the lenticular tissues in its transparent state over time. In this study, cataract-causing familial mutations, P20R and A171T, were introduced in CRYАB gene. After successful expression in Escherichia coli and subsequent purification, the recombinant proteins were subjected to extensive structural and functional analyses using various spectroscopic techniques, gel electrophoresis, and electron microscopy. The results of fluorescence and Raman assessments suggest important but discreet conformational changes in human αB-Cry upon these cataractogenic mutations. Furthermore, the mutant proteins exhibited significant secondary structural alteration as revealed by FTIR and Raman spectroscopy. An increase in conformational stability was seen in the human αB-Cry bearing these congenital cataractogenic mutations. The oligomeric size distribution and chaperone-like activity of human αB-Cry were significantly altered by these mutations. The P20R mutant protein was observed to loose most of the chaperone-like activity. Finally, these cataractogenic mutant proteins exhibited an increased propensity to form the amyloid fibrils when incubated under environmental stress. Overall, the structural and functional changes in mutated human αB-Cry proteins can shed light on the pathogenic development of congenital cataracts.  相似文献   
4.
Summary At sites in the United States, creosote bushes (Larrea tridentata (DC.) Cov.) orient foliage clusters predominantly toward the southeast. Foliage of bushes at the southernmost distribution extreme in Mexico shows no predominant orientation. Clusters at all sites are inclined between 33° and 71° from the horizontal. Inclinations are steeper in the drier and hotter Mojave Desert than in the Chihuahuan Desert. Individual leaflets, though not measured, appear more randomly oriented than foliage clusters. In several populations studied, branches were shorter in the southeastern sectors of the crown, reducing self-shading early in the morning. Measurements of direct beam radiation interception by detached branches, using digital image processing, indicated that foliage clusters oriented toward the southeast exhibited less self-shading during spring mornings than clusters oriented northeast. This effect was not apparent at the summer solstice. This type of canopy architecture may tend to minimize self-shading during the morning hours when conditions are more favorable for photosynthesis, resulting in an improved daily water use efficiency.  相似文献   
5.
We have isolated from bovine cerebral cortex cells and purified to homogeneity an 18,000 dalton, pl 3.0 sialoglycopeptide that inhibits protein synthesis and DNA synthesis of nontransformed but not transformed cells without affecting uptake of radiolabeled precursors. In this paper, we examine the relationship between the binding of the sialoglycopeptide inhibitor to 3T3 cells and inhibition of protein synthesis. Binding of the sialoglycopeptide to 3T3 cells was rapid at 37 degrees C and reached a maximum at 30 min; the binding at 37 degrees C was shown to be saturable and specific. Scatchard analysis of the binding indicated that 3T3 cells contained about 2 X 10(4) receptors/cell with a dissociation constant of 1.0-1.5 nM. Several lines of evidence indicated that receptor occupancy on 3T3 cells correlated with the protein synthesis inhibitory activity of the sialoglycopeptide. A comparison of the kinetics of inhibitor binding with the kinetics of protein synthesis inhibition demonstrated that binding directly correlated with the inhibition of protein synthesis, concentration-dependent inhibition of protein synthesis directly correlated with concentration-dependent receptor occupancy, and a direct correlation was also observed between the kinetics of inhibitor dissociation from its specific cell surface receptor and the kinetics of recovery from protein synthesis inhibition.  相似文献   
6.
In vitro differentiation studies using the bipotential human leukemia cell line, HL60, have indicated that high levels of expression of two proto-oncogenes, c-fos and c-fms, are restricted to the myelomonocytic lineage. No such expression has been detected in induced granulocytic cells. In striking contrast to these observations, we found that c-fos mRNA levels are very high in purified human granulocytes, but barely detectable in blood monocytes and tissue macrophages. Human granulocytes contain, however, relatively low levels of c-fos protein, indicating that c-fos mRNA is inefficiently translated or that the protein is rapidly degraded in these cells. In closer agreement with the in vitro results, the level of the expression of c-fms is high in purified blood monocytes and undetectable in granulocytes. We found, however, that the evolution of monocytes into tissue macrophages is accompanied by a significant decrease in c-fms expression, suggesting that the function of c-fms is restricted to specific stages of monocytic differentiation. Our observations also show that results obtained using in vitro differentiation systems have to be regarded with caution, since they may not reflect the in vivo situation.  相似文献   
7.
Nilsen ET  Sharifi MR 《Plant physiology》1994,105(4):1385-1391
Photosynthesis (Pn) was measured in stems of two desert legumes, Caesalpinia virgata at a low elevation site (118 m) in the Sonoran Desert and Senna armata at a higher elevation (950 m) in the Mojave Desert. The lower elevation site experienced higher spring and summer temperatures than the higher elevation site, but the air vapor pressure, irradiance, and rainfall patterns were similar. Mid-morning maximum stem Pn was highest in May for C. virgata (7.8 [mu]mol m-2 s-1) and in July for S. armata (5.8 [mu]mol m-2 s-1). The seasonal variation in maximum stem Pn was not associated with changes in bulk tissue water potential or chlorenchyma tissue nitrogen concentration. The main environmental regulators of seasonal stem Pn were temperature and leaf to air vapor pressure gradient. Light-response curves indicated no major differences in apparent quantum yield or light compensation point between the spring and summer, but light-saturated stem Pn at ambient temperature decreased for C. virgata between these seasons. The optimal temperature for stem Pn remained the same for both species between the spring and the summer. However, stem Pn of both species increased at all temperatures between the spring and summer. Potential stem Pn under optimal conditions and CO2-saturated stem Pn increased for both species between spring and summer. The increase in stem Pn potential allowed these species to maintain stem Pn during the summer even though stem Pn responses to temperature and vapor pressure did not acclimate to seasonal climatic conditions.  相似文献   
8.
1. Trees present herbivorous insects with the greatest diversity of resources of any plant growth form. Both ontogeny and shading can alter suitability for arboreal insect herbivores. 2. We conducted a longitudinal study of tagged ‘mature’ (>12 months old) Eucalyptus camaldulensis leaves to compare the suitability of understorey and canopy trees for the leaf senescence-inducing psyllid, Cardiaspina albitextura. We quantified sugars and tannins as possible predictors of nymphal abundance. 3. Canopy leaves hosted double the number of nymphs as understorey leaves. Variation among individual trees (understorey and canopy) was the most important source of heterogeneity explaining psyllid abundance, although relative leaf age significantly influenced oviposition on canopy leaves. The diversity of foliar sugars was higher among canopy leaves than among understorey leaves. There was significant between-tree diversity in total hydrolysable tannins (HTs) and total condensed tannins (CTs) among understorey trees but not among canopy trees. Heterogeneity among understorey and canopy trees was explained by greater diversity of ellagitannins (HTs) than of CTs. 4. Shading is detrimental to the survival of nymphs on both host types, but sugars are unlikely to explain variation in suitability. Vescalagin (an ellagitannin) was negatively correlated with the abundance of nymphs on both host types.  相似文献   
9.
10.
The known alkaloids N-methylcorydine and magnoflorine were major constituents of stems and branches of Zanthoxylum punctatum (Rutaceae). Berberine was the major alkaloid of Z. monophyllum, which also contained a new pyrano-2-quinolone alkaloid, zanthophylline, and its desmethyl analog. Zanthophylline has an —NCH2OAc functional group which is readily hydrolyzed by dilute acid. Methyl vanillate and the furocoumarin columbianetin were also found in Z. monophyllum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号