首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   3篇
  2021年   1篇
  2015年   1篇
  2014年   2篇
  2011年   3篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Mogul R  Johansen E  Holman TR 《Biochemistry》2000,39(16):4801-4807
Inhibition of lipoxygenase (LO) is currently an important goal of biomedical research due to its critical role in asthma, atherosclerosis, and cancer regulation. Steady-state kinetic data indicate that oleic acid (OA) is a simple competitive inhibitor for soybean lipoxygenase; however, kinetic isotope effect (KIE) data suggest a more complicated inhibitory mechanism. To investigate the inhibitory effects of fatty acids on lipoxygenase more thoroughly, we have synthesized a novel inhibitor to lipoxygenase, (Z)-9-octadecenyl sulfate (oleyl sulfate, OS), which imparts kinetic properties that are inconsistent with simple competitive inhibition for both SLO-1 and 15-HLO. The KIE exhibits a hyperbolic rise with addition of OS, indicating the formation of a catalytically active ternary complex with K(D) values of 0.6 +/- 0.2 and 0.4 +/- 0.05 microM for SLO-1 and 15-HLO, respectively. The steady-state kinetics show that SLO-1 proceeds through a hyperbolic mixed-type inhibition pathway, where OS binding (K(i) = 0.7 +/- 0.3 microM) causes an approximate 4-fold increase in the K(m)(app) (alpha = 4.6 +/- 0.5) and a decrease in the k(cat) by approximately 15% (beta = 0.85 +/- 0.1). 15-HLO also exhibits a hyperbolic saturation of k(cat)/K(m) consistent with the observed rise in its KIE. Taken together, these findings indicate the presence of an allosteric site in both SLO-1 and 15-HLO and suggest broad implications regarding the inhibition of LO and the treatment of LO-related diseases.  相似文献   
2.
The effects of cold plasma on Deinococcus radiodurans, plasmid DNA, and model proteins were assessed using microbiological, spectrometric, and biochemical techniques. In low power O(2) plasma (approximately 25 W, approximately 45 mTorr, 90 min), D. radiodurans, a radiation-resistant bacterium, showed a 99.999% reduction in bioburden. In higher power O(2) plasma (100 W and 500 mTorr), the reduction rate increased about 10-fold and observation by atomic force microscopy showed significant damage to the cell. Damage to cellular lipids, proteins, and chromosome was indicated by losses of infrared spectroscopic peaks at 2930, 1651, 1538, and 1245 cm(-1), respectively. In vitro experiments show that O(2) plasmas induce DNA strand scissions and cross-linking as well as reduction of enzyme activity. The observed degradation and removal of biomolecules was power-dependent. Exposures to 200 W at 500 mTorr removed biomolecules to below detection limits in 60 s. Emission spectroscopy indicated that D. radiodurans cells were volatilized into CO(2), CO, N(2), and H(2)O, confirming that these plasmas were removing complex biological matter from surfaces. A CO(2) plasma was not as effective as the O(2) plasma, indicating the importance of plasma composition and the dominant role of chemical degradation. Together, these findings have implications for NASA planetary protection schemes and for the contamination of Mars.  相似文献   
3.
Terbium-sensitized luminescence and its applicability towards the detection of Bacillus spores such as anthrax are of significant interest to research in biodefense and medical diagnostics. Accordingly, we have measured the effects of terbium chelation upon the parameters associated with dipicolinate ligation and spore detection. Namely, the dissociation constants, intrinsic brightness, luminescent lifetimes, and biological stabilities for several Tb(chelate)(dipicolinate)x complexes were determined using linear, cyclic, and aromatic chelators of differing structure and coordination number. This included the chelator array of NTA, BisTris, EGTA, EDTA, BAPTA, DO2A, DTPA, DO3A, and DOTA (respectively, 2,2′,2″-nitrilotriacetic acid; 2,2-bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol; ethylene glycol-bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid; ethylenediamine-N,N,N′,N′-tetraacetic acid; 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid; diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid; 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid; and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). Our study has revealed that the thermodynamic and temporal emission stabilities of the Tb(chelate)(dipicolinate)x complexes are directly related to chelate rigidity and a ligand stoichiometry of x = 1, and that chelators possessing either aromaticity or low coordination numbers are destabilizing to the complexes when in extracts of an extremotolerant Bacillus spore. Together, our results demonstrate that both Tb(EDTA) and Tb(DO2A) are chemically and biochemically stable and thus applicable as respectively low and high-cost luminescent reporters for spore detection, and thereby of significance to institutions with developing biodefense programs.  相似文献   
4.
Administration of ineffective anticancer therapy is associated with unnecessary toxicity and development of resistant clones. Cancer stem-like cells (CSLCs) resist chemotherapy, thereby causing relapse of the disease. Thus, development of a test that identifies the most effective chemotherapy management offers great promise for individualized anticancer treatments. We have developed an ex vivo chemotherapy sensitivity assay (ChemoID), which measures the sensitivity of CSLCs as well as the bulk of tumor cells to a variety of chemotherapy agents. Two patients, a 21-year old male (patient 1) and a 5-month female (patient 2), affected by anaplastic WHO grade-III ependymoma were screened using the ChemoID assay. Patient 1 was found sensitive to the combination of irinotecan and bevacizumab, which resulted in a prolonged disease progression free period of 18 months. Following recurrence, the combination of various chemotherapy drugs was tested again with the ChemoID assay. We found that benzyl isothiocyanate (BITC) greatly increased the chemosensitivity of the ependymoma cells to the combination of irinotecan and bevacizumab. After patient 1 was treated for two months with irinotecan, bevacizumab and supplements of cruciferous vegetable extracts containing BITC, we observed over 50% tumoral regression in comparison with pre-ChemoID scan as evidenced by MRI. Patient 2 was found resistant to all treatments tested and following 6 cycles of vincristine, carboplatin, cyclophosphamide, etoposide, and cisplatin in various combinations, the tumor of this patient rapidly progressed and proton beam therapy was recommended. As expected animal studies conducted with patient derived xenografts treated with ChemoID screened drugs recapitulated the clinical observation. This assay demonstrates that patients with the same histological stage and grade of cancer may vary considerably in their clinical response, suggesting that ChemoID testing which measures the sensitivity of CSLCs as well as the bulk of tumor cells to a variety of chemotherapy agents could lead to more effective and personalized anticancer treatments in the future.  相似文献   
5.
The whole-cell voltage-clamp technique employing electrolyte-filled micro-pipette suction electrodes is widely used to investigate questions requiring an electrophysiological approach. With this technique, the ionic composition of the cytosol is assumed to be strongly influenced (as result of diffusion) by the ionic composition of the solution contained in the electrode. If this assumption is valid for isolated cardiac myocytes, the technique would be particularly powerful for studying the dependence of their Na,K-pump on the intracellular [Na+]. However, the relationship between the concentrations of ions in the solution filling the electrode and those in the cytosol has not been established. The relationship was investigated to determine in particular whether the [Na+] at the intracellular cation ligand binding sites for the Na-pump ([ Na+]ps) can be set and clamped by [Na+] in the pipette electrode ([ Na+]pip). If [Na+]pip can set and clamp [Na+]ps, this would provide a means for defining the dependence of the Na,K-pump on intracellular [Na+]. The relationship between [Na+]pip and [Na+]ps was analyzed using two approaches. First, a mathematical model of three-dimensional ionic diffusion within a whole-cell patch-clamped myocyte was developed and the effects of experimental parameters on mean [Na+]ps were investigated. When typical experimental values were simulated, the time course to achieve steady state mean [Na+]ps was found to be most sensitive to variations in electrode pore size, cell length and the Na+ pumping rate, but at steady state, mean [Na+]ps varies from [Na+]pip by 5% or less depending on pump rate. Second, to provide experimental support for the validity of the simulations, isolated ventricular myocytes were voltage-clamped and the reversal potential for the Na current was determined in order to estimate steady state intracellular [Na+]. The results of the mathematical and experimental analyses suggest that steady state [Na+]ps can be regulated by the [Na+] in suction pipette electrodes. These findings, while also having a broader significance, indicate for isolated cardiac myocytes that whole-cell suction micro-electrodes can provide a means to assess the dependence of the Na,K-pump on [Na+]ps.  相似文献   
6.
There is much debate whether the fatty acid substrate of lipoxygenase binds "carboxylate-end first" or "methyl-end first" in the active site of soybean lipoxygenase-1 (sLO-1). To address this issue, we investigated the sLO-1 mutants Trp500Leu, Trp500Phe, Lys260Leu, and Arg707Leu with steady-state and stopped-flow kinetics. Our data indicate that the substrates (linoleic acid (LA), arachidonic acid (AA)), and the products (13-(S)-hydroperoxy-9,11-(Z,E)-octadecadienoic acid (HPOD) and 15-(S)-hydroperoxyeicosatetraeonic acid (15-(S)-HPETE)) interact with the aromatic residue Trp500 (possibly pi-pi interaction) and with the positively charged amino acid residue Arg707 (charge-charge interaction). Residue Lys260 of soybean lipoxygenase-1 had little effect on either the activation or steady-state kinetics, indicating that both the substrates and products bind "carboxylate-end first" with sLO-1 and not "methyl-end first" as has been proposed for human 15-lipoxygenase.  相似文献   
7.
Mogul R  Holman TR 《Biochemistry》2001,40(14):4391-4397
Lipoxygenases are currently potential targets for therapies against asthma, artherosceloris, and cancer. Recently, inhibition studies on both soybean (SLO) and human lipoxygenase (15-HLO) revealed the presence of an allosteric site that binds both substrate, linoleic acid, and inhibitors; oleic acid (OA) and oleyl sulfate (OS). OS (K(D) approximately 0.6 microM) is a approximately 30-fold more potent inhibitor than OA (K(D) approximately 20 microM) due to the increased ionic strength of the sulfate moiety. To further investigate the role of the sulfate moiety on lipoxygenase function, SLO and 15-HLO were assayed against several fatty sulfate substrates (linoleyl sulfate (LS), cis-11,14-eicosadienoyl sulfate, and arachidonyl sulfate). The results demonstrate that SLO catalyzes all three fatty sulfate substrates and is not inhibited, indicating a binding selectivity of LS for the catalytic site and OS for the allosteric site. The 15-HLO, however, manifests parabolic inhibition kinetics with increasing substrate concentration, and it is irreversibly inhibited by these fatty sulfate substrates at high concentrations. The inhibition can be stopped, however, by the addition of detergent to the fatty sulfate mixture prior to the addition of 15-HLO. These results, combined with the modeling of the kinetic data, indicate that the inhibition of 15-HLO is due to a substrate aggregate. These substrate aggregates, however, do not inhibit SLO and could present a novel mode of inhibition for 15-HLO.  相似文献   
8.
The specification of vascular patterning in plants has interested plant biologists for many years. In the last decade a new context has emerged for this interest. Specifically, recent proposals to engineer C4 traits into C3 plants such as rice require an understanding of how the distinctive venation pattern in the leaves of C4 plants is determined. High vein density with Kranz anatomy, whereby photosynthetic cells are arranged in encircling layers around vascular bundles, is one of the major traits that differentiate C4 species from C3 species. To identify genetic factors that specify C4 leaf anatomy, we generated ethyl methanesulfonate‐ and γ‐ray‐mutagenized populations of the C4 species sorghum (Sorghum bicolor), and screened for lines with reduced vein density. Two mutations were identified that conferred low vein density. Both mutations segregated in backcrossed F2 populations as homozygous recessive alleles. Bulk segregant analysis using next‐generation sequencing revealed that, in both cases, the mutant phenotype was associated with mutations in the CYP90D2 gene, which encodes an enzyme in the brassinosteroid biosynthesis pathway. Lack of complementation in allelism tests confirmed this result. These data indicate that the brassinosteroid pathway promotes high vein density in the sorghum leaf, and suggest that differences between C4 and C3 leaf anatomy may arise in part through differential activity of this pathway in the two leaf types.  相似文献   
9.

Rationale

Progressive midlife weight gain is associated with multiple adverse health outcomes and may represent an early manifestation of insulin resistance in a distinct subset of women. Emerging data implicate hyperinsulinema as a proximate cause of weight gain and support strategies that attenuate insulin secretion.

Objective

To assess a previously reported novel hypocaloric carbohydrate modified diet alone (D), and in combination with metformin (M) and metformin plus low-dose rosiglitazone (MR), in diverse women with midlife weight gain (defined as >20lbs since the twenties), normal glucose tolerance, and hyperinsulinemia.

Participants

46 women, mean age 46.6±1.0, BMI 30.5±0.04 kg/m2, 54.5% white, 22.7% black, 15.9% Hispanic, at 2 university medical centers.

Methods

A dietary intervention designed to reduce insulin excursions was implemented in 4 weekly nutritional group workshops prior to randomization.

Main Outcome Measure

Change in 6-month fasting insulin. Pre-specified secondary outcomes were changes in body weight, HOMA-IR, metabolic syndrome (MS) measures, leptin, and adiponectin.

Results

Six-month fasting insulin declined significantly in the M group: 12.5 to 8.0 µU/ml, p = .026. Mean 6-month weight decreased significantly and comparably in D, M, and MR groups: 4.7, 5.4, and 5.5% (p’s.049, .002, and.032). HOMA–IR decreased in M and MR groups (2.5 to 1.6 and 1.9 to 1.3, p’s = .054, .013). Additional improvement in MS measures included reduced waist circumference in D and MR groups and increased HDL in the D and M groups. Notably, mean fasting leptin did not decline in a subset of subjects with weight loss (26.15±2.01 ng/ml to 25.99±2.61 ng/ml, p = .907. Adiponectin increased significantly in the MR group (11.1±1.0 to 18.5±7.4, p<.001) Study medications were well tolerated.

Conclusions

These findings suggest that EMPOWIR’s easily implemented dietary interventions, alone and in combination with pharmacotherapies that target hyperinsulinemia, merit additional investigation in larger, long-term studies.

Trial Registration

ClinicalTrials.gov NCT00618072  相似文献   
10.
Every day almost one billion people suffer from chronic hunger, and the situation is expected to deteriorate with a projected population growth to 9 billion worldwide by 2050. In order to provide adequate nutrition into the future, rice yields in Asia need to increase by 60%, a change that may be achieved by introduction of the C(4) photosynthetic cycle into rice. The international C(4) Rice Consortium was founded in order to test the feasibility of installing the C(4) engine into rice. This review provides an update on two of the many approaches employed by the C(4) Rice Consortium: namely, metabolic C(4) engineering and identification of determinants of leaf anatomy by mutant screens. The aim of the metabolic C(4) engineering approach is to generate a two-celled C(4) shuttle in rice by expressing the classical enzymes of the NADP-ME C(4) cycle in a cell-appropriate manner. The aim is also to restrict RuBisCO and glycine decarboxylase expression to the bundle sheath (BS) cells of rice in a C(4)-like fashion by specifically down-regulating their expression in rice mesophyll (M) cells. In addition to the changes in biochemistry, two-celled C(4) species show a convergence in leaf anatomy that include increased vein density and reduced numbers of M cells between veins. By screening rice activation-tagged lines and loss-of-function sorghum mutants we endeavour to identify genes controlling these key traits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号