首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   8篇
  101篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   6篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   9篇
  2002年   7篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+), glucagon-producing alpha cells (CD9- /CD56+) and trypsin-producing acinar cells (CD9- /CD56-). This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples.  相似文献   
2.
Multinucleate cells are widespread in nature, yet the mechanism by which cells fuse their plasma membranes is poorly understood. To identify animal fusogens, we performed new screens for mutations that abolish cell fusion within tissues of C. elegans throughout development. We identified the gene eff-1, which is expressed as cells acquire fusion competence and encodes a novel integral membrane protein. EFF-1 sequence motifs suggest physicochemical actions that could cause adjacent bilayers to fuse. Mutations in the extracellular domain of EFF-1 completely block epithelial cell membrane fusion without affecting other perfusion events such as cell generation, patterning, differentiation, and adhesion. Thus, EFF-1 is a key component in the mechanism of cell fusion, a process essential to normal animal development.  相似文献   
3.
4.
    
As recombinant viruses expressing scorpion toxins are moving closer toward the market, it is important to obtain large amounts of pure toxin for biochemical characterization and the evaluation of biological activity in nontarget organisms. In the past, we purified a large amount of Androctonus australis anti-insect toxin (AaIT) present in the venom of A. australis with an analytical reversed-phase column by repeated runs of crude sample. We now report 20 times improved efficiency and speed of the purification by employing a preparative reversed-phase column. In just two consecutive HPLC steps, almost 1 mg of AaIT was obtained from 70 mg crude venom. Furthermore, additional AaIT was obtained from side fractions in a second HPLC run. Recently discovered insect selective toxin, AaIT5, was isolated simultaneously from the same venom batch. It shows different biological toxicity symptoms than the known excitatory and depressant insect toxins. AaIT5 gave 100% mortality with a dose of less than 1.3 μg against fourth-instar tobacco budworms Heliothis virescens 24 h after injection. During the purification process, we implemented mass spectrometry in addition to bioassays to monitor the presence of AaIT and AaIT5 in the HPLC fractions. Mass spectrometric screening can unambiguously follow the purification process and can greatly facilitate and expedite the downstream purification of AaIT and AaIT5 eliminating the number of bioassays required. Further, electrospray ionization was compared with matrix-assisted desorption/ionization and evaluated as a method of choice for mass spectrometric characterization of fractions from the venom purification for it provided higher mass accuracy and relative quantitation capability. Molecular models were built for AaIT5, excitatory toxin AaIT4, and depressant toxin LqhIT2. Three-dimensional structure of AaIT5 was compared with structures of the other two toxins, suggesting that AaIT5 is similar to depressant toxins. Arch. Insect Biochem. Physiol. 38:53–65, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
5.
6.
Autophagy plays a key role in the pathophysiology of schizophrenia as manifested by a 40% decrease in BECN1/Beclin 1 mRNA in postmortem hippocampal tissues relative to controls. This decrease was coupled with the deregulation of the essential ADNP (activity-dependent neuroprotector homeobox), a binding partner of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) another major constituent of autophagy. The drug candidate NAP (davunetide), a peptide fragment from ADNP, enhanced the ADNP-LC3B interaction. Parallel genetic studies have linked allelic variation in the gene encoding MAP6/STOP (microtubule-associated protein 6) to schizophrenia, along with altered MAP6/STOP protein expression in the schizophrenic brain and schizophrenic-like behaviors in Map6-deficient mice. In this study, for the first time, we reveal significant decreases in hippocampal Becn1 mRNA and reversal by NAP but not by the antipsychotic clozapine (CLZ) in Map6-deficient (Map6+/−) mice. Normalization of Becn1 expression by NAP was coupled with behavioral protection against hyperlocomotion and cognitive deficits measured in the object recognition test. CLZ reduced hyperlocomotion below control levels and did not significantly affect object recognition. The combination of CLZ and NAP resulted in normalized outcome behaviors. Phase II clinical studies have shown NAP-dependent augmentation of functional activities of daily living coupled with brain protection. The current studies provide a new mechanistic pathway and a novel avenue for drug development.  相似文献   
7.
OBJECTIVE: To assess the effect of size at birth, maternal nutrition, and body mass index on blood pressure in late adolescence. DESIGN: Population based analysis of birth weight corrected for gestational age, mother''s weight before pregnancy and weight gain in pregnancy, obtained from the Jerusalem perinatal study, and blood pressure and body mass index at age 17, available from military draft records. SETTING: Jerusalem, Israel. SUBJECTS: 10,883 subjects (6684 men and 4199 women) born in Jerusalem during 1974-6 and subsequently drafted to the army. MAIN OUTCOME MEASURES: Systolic and diastolic blood pressures measured at age 17 and their correlation with birth weight, size at birth, mother''s body mass index and weight gain during pregnancy, and height and weight at age 17. RESULTS: Systolic and diastolic blood pressures were significantly and positively correlated with body weight, height, body mass index at age 17, and with mother''s body weight and body mass index before pregnancy, but not with birth weight or mother''s weight gain in pregnancy. CONCLUSION: Variables reflecting poor intrauterine nutrition, including low maternal body mass index before pregnancy, poor maternal weight gain in pregnancy, and being born small for gestational age, were not associated with a higher blood pressure in late adolescence.  相似文献   
8.
Primary cultures of neuronal and glial cells from 1-day-old neonatal rats contain high affinity receptors for insulin-like growth factor I (IGF-I). The IC50 for displacement of 125I-IGF-I binding by unlabeled IGF-I was 3 nM for neuronal cells and 4 nM for glial cells. Unlabeled insulin was 20-50 times less potent. Apparent molecular mass of the alpha subunits of the IGF-I receptor was 125 kDa in neuronal and 135 kDa in glial cells. IGF-I induced autophosphorylation of the IGF-I receptor beta subunit in lectin-purified membrane preparations in a dose-dependent manner. The major phosphoamino acid of the beta subunit in both cell types was tyrosine in the IGF-I-stimulated state and serine in the basal state. Apparent molecular mass of the beta subunits of the IGF-I receptors was 91 kDa for neuronal and 95 kDa for glial cells. Tyrosine kinase activity of the IGF-I receptors was demonstrated by IGF-I-induced phosphorylation of the exogenous substrate poly(Glu, Tyr) 4:1 in both cell types. IGF-I had no effect on 2-deoxyglucose uptake in neuronal cells. In contrast, in glial cells, IGF-I stimulated 2-deoxyglucose uptake at very high doses, presumably acting via the insulin receptor. The effect of IGF-I as a neurotrophic growth factor in both neuronal and glial cells was demonstrated by its stimulation of [3H]thymidine incorporation. These findings suggest the IGF-I is an important growth factor in nervous tissue-derived cells.  相似文献   
9.
Studies from multiple laboratories with a range of methods raised the possibility that insulin production occurs naturally at extrapancreatic sites. Part A covers the presence of insulin-related materials in organisms that do not have an endocrine pancreas, including unicellular prokaryotes and eukaryotes as well as multicellular non-vertebrate animals (insects et al.) and plants. Part B covers possible production of insulin by extrapancreatic tissues of vertebrates that are remote from a source of pancreatic insulin e.g. early chick embryos and mammalian cells in culture. Part C covers possible extrapancreatic insulin production in mammals in vivo. Each section ends with an outline summary with evidence in favor of and against the hypothesis.  相似文献   
10.
Mouse neuroblastoma N18 cells contain specific high affinity insulin and insulin-like growth factor-I (IGF-I) receptors. Insulin and IGF-I induce phosphorylation, in intact cells, of their respective receptor beta subunits. The insulin receptor beta subunit is represented by a 95-kDa phosphoprotein that is recognized by a specific antiserum (B10). The IGF-I receptor beta subunit is represented by two phosphoproteins of molecular mass 95 and 105 kDa. The hormone-induced phosphorylation was rapid and dose-dependent occurring on both phosphoserine and phosphotyrosine residues. In addition, both insulin and IGF-I induced phosphorylation of an endogenous protein of molecular mass 185 kDa (pp185). The rapidity and dose dependency of the phosphorylation of pp185 suggested that it may represent a common endogenous substrate for the insulin and IGF-I receptors in these neural-derived cells. Phosphorylation was primarily on phosphoserine and phosphotyrosine residues. pp185 did not absorb to wheat germ agglutinin-agarose and was not stimulated by either epidermal growth factor or platelet-derived growth factor. The finding of pp185 in these neural-related cells as well as in non-neural tissues suggests that it may represent a ubiquitous endogenous substrate for both the insulin and IGF-I receptor kinases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号