首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   13篇
  163篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   7篇
  2014年   5篇
  2013年   6篇
  2012年   8篇
  2011年   15篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   8篇
  2004年   14篇
  2003年   6篇
  2002年   12篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有163条查询结果,搜索用时 0 毫秒
1.
Information on the regulation and structure-function relation of enzymes involved in DNA precursor synthesis is pivotal, as defects in several of these enzymes have been found to cause depletion or deletion of mitochondrial DNA resulting in severe diseases. Here, the effect of amino acid 106 on the enzymatic properties of the cell-cycle-regulated human cytosolic thymidine kinase 1 (TK1) is investigated. On the basis of the previously observed profound differences between recombinant TK1 with Val106 (V106WT) and Met106 (V106M) in catalytic activity and oligomerization pattern, we designed and characterized nine mutants of amino acid 106 differing in size, conformation and polarity. According to their oligomerization pattern and thymidine kinetics, the TK1 mutants can be divided into two groups. Group I (V106A, V106I and V106T) behaves like V106WT, in that pre-assay exposure to ATP induces reversible transition from a dimer with low catalytic activity to a tetramer with high catalytic activity. Group II (V106G, V106H, V106K, V106L and V106Q) behaves like V106M in that they are permanently high activity tetramers, irrespective of ATP exposure. We conclude that size and conformation of amino acid 106 are more important than polarity for the catalytic activity and oligomerization of TK1. The role of amino acid 106 and the sequence surrounding it for dimer-tetramer transition was confirmed by cloning the putative interface fragment of human TK1 and investigating its oligomerization pattern.  相似文献   
2.
Nonconidiating (Con(-)) mutants were isolated from wild-type and color mutants of the fungus Trichoderma viride Pers. ex Fries. Heterokaryons were easily produced and maintained, and the complementation relationships among the Con(-) mutants were established. Most Con(-) mutants could complement one or more of the other Con(-) mutants. When marked Con(-) mutants were mixed with marked Con(+) testers, conidiating heterokaryons were formed. The conidia thus obtained produced only the parental type colonies after replating, indicating that nonconidiation is a nuclear characteristic. Allowing two Con(-) colonies to meet and produce a heterokaryon, it was found that the migration of nuclei reached a rate of 5 mm per hr, which is several times greater than the rate of hyphal elongation; it was also found that heterokaryosis of a mycelial region preceded its ability to conidiate.  相似文献   
3.
4.
Summary A streptomycin resistant Nicotiana plastome mutant, X/str R6, was subjected to molecular analysis. In this mutant, a single nucleotide transition, C » T, in the chloroplast gene for ribosomal protein S12 alters codon 90 from proline to serine while the nucleotide sequence of the chloroplast 16 S rRNA gene is identical to that of the wild type. Mutant X/str R6 thus differs from several previously reported streptomycin resistant chloroplast mutants which are altered in the gene for 16 S rRNA.  相似文献   
5.
6.
The current standard of care for newly diagnosed glioblastoma multiforme (GBM) is resection followed by radiotherapy with concomitant and adjuvant temozolomide. Recent studies suggest that nearly half of the patients with early radiological deterioration post treatment do not suffer from tumor recurrence but from pseudoprogression. Similarly, a significant number of patients with brain metastases suffer from radiation necrosis following radiation treatments. Conventional MRI is currently unable to differentiate tumor progression from treatment-induced effects. The ability to clearly differentiate tumor from non-tumoral tissues is crucial for appropriate patient management. Ten patients with primary brain tumors and 10 patients with brain metastases were scanned by delayed contrast extravasation MRI prior to surgery. Enhancement subtraction maps calculated from high resolution MR images acquired up to 75 min after contrast administration were used for obtaining stereotactic biopsies. Histological assessment was then compared with the pre-surgical calculated maps. In addition, the application of our maps for prediction of progression was studied in a small cohort of 13 newly diagnosed GBM patients undergoing standard chemoradiation and followed up to 19.7 months post therapy. The maps showed two primary enhancement populations: the slow population where contrast clearance from the tissue was slower than contrast accumulation and the fast population where clearance was faster than accumulation. Comparison with histology confirmed the fast population to consist of morphologically active tumor and the slow population to consist of non-tumoral tissues. Our maps demonstrated significant correlation with perfusion-weighted MR data acquired simultaneously, although contradicting examples were shown. Preliminary results suggest that early changes in the fast volumes may serve as a predictor for time to progression. These preliminary results suggest that our high resolution MRI-based delayed enhancement subtraction maps may be applied for clear depiction of tumor and non-tumoral tissues in patients with primary brain tumors and patients with brain metastases.  相似文献   
7.
Rosen R  Becher D  Büttner K  Biran D  Hecker M  Ron EZ 《Proteomics》2004,4(10):3068-3077
We show in Gram-negative and Gram-positive bacteria the appearance of highly acidic proteins, which are highly phosphorylated. This group of proteins includes many cellular proteins, such as chaperones, biosynthetic, and metabolic enzymes. These proteins accumulate under stress conditions or under conditions, which overload the proteolytic system. Pulse chase experiments using radioactive phosphate indicate that the phosphorylated proteins have a short half-life, suggesting that they could be degradation intermediates. Moreover, results from in vitro experiments in Escherichia coli indicated that ribosomal proteins become susceptible to proteolysis after polyphosphorylation. Therefore, it is possible that the highly phosphorylated proteins represent a group of proteins tagged for degradation by phosphorylation. Such a tagging process may be involved in a general bacterial degradation pathway.  相似文献   
8.
A family with a "fragile site" at 16q22, inducible by both interferon and Distamycin A, is reported. Immunological problems were found in the family. In a sibship of ten, eight children had died in infancy. Our study led to the conclusions that interferon and Distamycin A induce fragility at the same site, which has the same characteristics as the spontaneous fragile site; that a viral hypothesis for this fragility may be supported; and that immunoincompetence of one kind or another must be considered in families presenting a fragile site at 16q22.  相似文献   
9.
10.
The tricarboxylic acid cycle enzyme aconitase in yeast is a single translation product, which is dual targeted and distributed between the mitochondria and the cytosol by a unique mechanism involving reverse translocation. There is limited understanding regarding the precise mechanism of reverse translocation across the mitochondrial membranes. Here, we examined the contribution of the mature part of aconitase to its dual targeting. We created a set of aconitase mutants harboring two kinds of alterations: (1) point mutations or very small deletions in conserved sites and (2) systematic large deletions. These mutants were screened for their localization by a α-complementation assay, which revealed that the aconitase fourth domain that is at the C-terminus (amino acids 517-778) is required for aconitase distribution. Moreover, fusion of this C-terminal domain to mitochondria-targeted passenger proteins such as dihydrofolate reductase and orotidine-5′-phosphate decarboxylase, conferred dual localization on them. These results indicate that the aconitase C-terminal domain is both necessary and sufficient for dual targeting, thereby functioning as an “independent signal”. In addition, the same C-terminal domain was shown to be necessary for aconitase efficient posttranslational import into mitochondria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号