首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   554篇
  免费   32篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   10篇
  2017年   9篇
  2016年   7篇
  2015年   18篇
  2014年   17篇
  2013年   42篇
  2012年   34篇
  2011年   34篇
  2010年   32篇
  2009年   38篇
  2008年   33篇
  2007年   43篇
  2006年   47篇
  2005年   47篇
  2004年   30篇
  2003年   31篇
  2002年   24篇
  2001年   8篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1995年   4篇
  1993年   3篇
  1992年   2篇
  1991年   6篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1959年   1篇
  1877年   1篇
排序方式: 共有586条查询结果,搜索用时 31 毫秒
1.
Eighteen granular cell tumors from various sites were examined with antisera directed against protein S-100, neuron specific enolase (NSE), alpha-1-antichymotrypsin, and alpha-1-antitrypsin, glial fibrillary acidic protein (GFAP), lysozyme, factor VIII-related antigen, myoglobin and vimentin, as well as with a monoclonal antibody (lu-5) directed against a panepithelial marker. The immunocytochemical reaction pattern of the tumors was heterogeneous. The brain and pituitary tumors and one thyroid tumor reacted for alpha-1-antichymotrypsin and alpha-1-antitrypsin, but not for S-100 protein and NSE. However, tumors from other sites showed immunoreactions for S-100 protein and NSE and some also for vimentin. Reactions for alpha-1-antichymotrypsin and alpha-1-antitrypsin were not observed. All other reactions were similarly negative. We conclude that the morphologically homogeneous group of granular cell tumors is biologically heterogeneous.  相似文献   
2.
The initial (F0), maximal (FM) and steady-state (FS) levels of chlorophyll fluorescence emitted by intact pea leaves exposed to various light intensities and environmental conditions, were measured with a modulated fluorescence technique and were analysed in the context of a theory for the energy fluxes within the photochemical apparatus of photosynthesis. The theoretically derived expressions of the fluorescence signals contain only three terms, X=J2p2F/(1–G), Y=T/(1–G) and V, where V is the relative variable fluorescence, J2 is the light absorption flux in PS II, p2F is the probability of fluorescence from PS II, G and T are, respectively, the probabilities for energy transfer between PS II units and for energy cycling between the reaction center and the chlorophyll pool: F0=X, FM=X/(1–Y) and FS=X(1+(YV/(1–Y))). It is demonstrated that the amplitudes of the previously defined coefficients of chlorophyll fluorescence quenching, qP and qN, reflect, not just photochemical (qP) or nonphotochemical (qN) events as implied in the definitions, but both photochemical and nonphotochemical processes of PS II deactivation. The coefficient qP is a measure of the ratio between the actual macroscopic quantum yield of photochemistry in PS II (41-1) in a given light state and its maximal value measured when all PS II traps are open (41-2) in that state, with 41-3 and 41-4. When the partial connection between PS II units is taken into consideration, 1-qP is nonlinearily related to the fraction of closed reaction centers and is dependent on the rate constants of all (photochemical as well as nonphotochemical) exciton-consuming processes in PS II. On the other hand, 1-qN equals the (normalized) ratio of the rate constant of photochemistry (k2b) to the combined rate constant (kN) of all the nonphotochemical deactivation processes excluding the rate constant k22 of energy transfer between PS II units. It is demonstrated that additional (qualitative) information on the individual rate constants, kN-k22 and k2b, is provided by the fluorescence ratios 1/FM and (1/F0)–(1/FM), respectively. Although, in theory, 41-5 is determined by the value of both k2b and kN-k22, experimental results presented in this paper show that, under various environmental conditions, 41-6 is modulated largely through changes in k N, confirming the idea that PS II quantum efficiency is dynamically regulated in vivo by nonphotochemical energy dissipation.Abbreviations Chl chlorophyll - F0, FM and FS initial, maximal and steady-state levels of modulated Chl fluorescence emitted by light-adapted leaves - PS I and II photosystem I and II - qP and qN (previously defined) photochemical and nonphotochemical components of Chl fluorescence quenching  相似文献   
3.
4.
A method for the analysis of total DNA of Streptomyces glaucescens is described. The relevant steps are (a) extraction and purification of DNA, (b) restriction of DNA samples with type II restriction enzymes, (c) one dimensional separation of restriction fragments by agarose gel electrophoresis. A typical banding pattern was obtained for each wild type strain, independant of growth conditions or age of the culture. Mutant strains exhibited in most cases the same banding pattern as the parent wild type strain. Only in one specific mutant class a fragment of about 9 megadalton was missing.  相似文献   
5.
Fluorescence and energy transfer properties of bean leaves greened by brief, repetitive xenon flashes were studied at −196 °C. The bleaching of P-700 has no influence on the yield of fluorescence at any wavelength of emission. The light-induced fluorescence yield changes which are observed in both the 690 and 730 nm emission bands in the low temperature fluorescence spectra are due to changes in the state of the Photosystem II reaction centers. The fluorescence yield changes in the 730 nm band are attributed to energy transfer from Photosystem II to Photosystem I. Such energy transfer was also confirmed by measurements of the rate of photooxidation of P-700 at −196 °C in leaves in which the Photosystem II reaction centers were either all open or all closed. It is concluded that energy transfer from Photosystem II to Photosystem I occurs in the flashed bean leaves which lack the light-harvesting chlorophyll a/b protein.  相似文献   
6.
Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.  相似文献   
7.
The feasibility to sequence entire genomes of virtually any organism provides unprecedented insights into the evolutionary history of populations and species. Nevertheless, many population genomic inferences – including the quantification and dating of admixture, introgression and demographic events, and inference of selective sweeps – are still limited by the lack of high‐quality haplotype information. The newest generation of sequencing technology now promises significant progress. To establish the feasibility of haplotype‐resolved genome resequencing at population scale, we investigated properties of linked‐read sequencing data of songbirds of the genus Oenanthe across a range of sequencing depths. Our results based on the comparison of downsampled (25×, 20×, 15×, 10×, 7×, and 5×) with high‐coverage data (46–68×) of seven bird genomes mapped to a reference suggest that phasing contiguities and accuracies adequate for most population genomic analyses can be reached already with moderate sequencing effort. At 15× coverage, phased haplotypes span about 90% of the genome assembly, with 50% and 90% of phased sequences located in phase blocks longer than 1.25–4.6 Mb (N50) and 0.27–0.72 Mb (N90). Phasing accuracy reaches beyond 99% starting from 15× coverage. Higher coverages yielded higher contiguities (up to about 7 Mb/1 Mb [N50/N90] at 25× coverage), but only marginally improved phasing accuracy. Phase block contiguity improved with input DNA molecule length; thus, higher‐quality DNA may help keeping sequencing costs at bay. In conclusion, even for organisms with gigabase‐sized genomes like birds, linked‐read sequencing at moderate depth opens an affordable avenue towards haplotype‐resolved genome resequencing at population scale.  相似文献   
8.
Multidrugs have the potential to bypass resistance. We investigated the in vitro activity and resistance circumvention of the multidrug cytarabine-L-fluorodeoxyuridine (AraC-L-5FdU), linked via a glycerophospholipid linkage. Cytotoxicity was determined using sensitive (A2780, FM3A/0) and resistant (AG6000, AraC resistant, deoxycytidine kinase deficient; FM3A/TK-, 5FdU resistant, thymidine kinase deficient) cell lines. Circumvention of nucleoside transporter and activating enzymes was determined using specific inhibitors, HPLC analysis and standard radioactivity assays. AraC-L-5FdU was active (IC50: 0.03 μM in both A2780 and FM3A/0), had some activity in AG6000 (IC50: 0.28 μ M), but no activity in FM3A/TK? (IC50: 18.3 μM). AraC-nucleotides were not detected in AG6000. 5FdU-nucleotides were detected in all cell lines. AraC-L-5FdU did not inhibit TS in FM3A/TK? (5%). Since phosphatase/nucleotidase-inhibition reduced cytotoxicity 7–70-fold, cleavage seems to be outside the cell, presumably to nucleotides, and then to nucleosides. The multidrug was orally active in the HT-29 colon carcinoma xenografts which are resistant toward the single drugs.  相似文献   
9.
In human high-density lipoprotein (HDL) represents the major cholesterol carrying lipoprotein class in cord blood, while cholesterol is mainly carried by low-density lipoprotein in maternal serum. Additionally, to carrying cholesterol, HDL also associates with a range of proteins as cargo. We tested the hypothesis that fetal HDL carries proteins qualitatively and quantitatively different from maternal HDL. These differences then contribute to distinct HDL functionality in both circulations. Shotgun proteomics and biochemical analyses were used to assess composition/function of fetal and maternal HDL isolated from uncomplicated human pregnancies at term of gestation. The pattern of analyzed proteins that were statistically elevated in fetal HDL (apoE, proteins involved in coagulation, transport processes) suggests a particle characteristic for the light HDL2 sub-fraction. In contrast, proteins that were enriched in maternal HDL (apoL, apoF, PON1, apoD, apoCs) have been described almost exclusively in the dense HDL3 fraction and relevant to its anti-oxidative function and role in innate immunity. Strikingly, PON1 mass and activity were 5-fold lower (p < 0.01) in the fetus, which was accompanied by attenuation of anti-oxidant capacity of fetal HDL. Despite almost equal quantity of CETP in maternal and fetal HDL, its enzymatic activity was 55% lower (p < 0.001) in the fetal circulation, whereas LCAT activity was not altered. These findings indicate that maternally derived HDL differs from fetal HDL with respect to its proteome, size and function. Absence of apoA-1, apoL and PON1 on fetal HDL is associated with decreased anti-oxidative properties together with deficiency in innate immunity collectively indicating distinct HDLs in fetuses.  相似文献   
10.

Background

Previous studies have observed an altitude-dependent increase in central apneas and a shift towards lighter sleep at altitudes >4000 m. Whether altitude-dependent changes in the sleep EEG are also prevalent at moderate altitudes of 1600 m and 2600 m remains largely unknown. Furthermore, the relationship between sleep EEG variables and central apneas and oxygen saturation are of great interest to understand the impact of hypoxia at moderate altitude on sleep.

Methods

Fourty-four healthy men (mean age 25.0±5.5 years) underwent polysomnographic recordings during a baseline night at 490 m and four consecutive nights at 1630 m and 2590 m (two nights each) in a randomized cross-over design.

Results

Comparison of sleep EEG power density spectra of frontal (F3A2) and central (C3A2) derivations at altitudes compared to baseline revealed that slow-wave activity (SWA, 0.8–4.6 Hz) in non-REM sleep was reduced in an altitude-dependent manner (∼4% at 1630 m and 15% at 2590 m), while theta activity (4.6–8 Hz) was reduced only at the highest altitude (10% at 2590 m). In addition, spindle peak height and frequency showed a modest increase in the second night at 2590 m. SWA and theta activity were also reduced in REM sleep. Correlations between spectral power and central apnea/hypopnea index (AHI), oxygen desaturation index (ODI), and oxygen saturation revealed that distinct frequency bands were correlated with oxygen saturation (6.4–8 Hz and 13–14.4 Hz) and breathing variables (AHI, ODI; 0.8–4.6 Hz).

Conclusions

The correlation between SWA and AHI/ODI suggests that respiratory disturbances contribute to the reduction in SWA at altitude. Since SWA is a marker of sleep homeostasis, this might be indicative of an inability to efficiently dissipate sleep pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号