全文获取类型
收费全文 | 154篇 |
免费 | 3篇 |
专业分类
157篇 |
出版年
2024年 | 1篇 |
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 4篇 |
2019年 | 4篇 |
2018年 | 3篇 |
2016年 | 4篇 |
2015年 | 3篇 |
2014年 | 7篇 |
2013年 | 11篇 |
2012年 | 14篇 |
2011年 | 11篇 |
2010年 | 5篇 |
2009年 | 7篇 |
2008年 | 11篇 |
2007年 | 10篇 |
2006年 | 6篇 |
2005年 | 6篇 |
2004年 | 3篇 |
2003年 | 7篇 |
2002年 | 5篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 1篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1995年 | 1篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 2篇 |
排序方式: 共有157条查询结果,搜索用时 15 毫秒
1.
Sirin Firidin Rafet Cagri Ozturk Melike Alemdag Oguzhan Eroglu Yahya Terzi Ilyas Kutlu Zehra Duygu Duzgunes Eyup Cakmak Ilhan Aydin 《Journal of fish biology》2020,97(4):1154-1164
Turbot, Scophthalmus maximus, is a commercially important demersal flatfish species distributed throughout the Black Sea. Several studies performed locally with a limited number of specimens using both mitochondrial DNA (mtDNA) and microsatellite markers evidenced notable genetic variation among populations. However, comprehensive population genetic studies are required to help management of the species in the Black Sea. In the present study eight microsatellite loci were used to resolve the population structure of 414 turbot samples collected from 12 sites across the Black Sea. Moreover, two mtDNA genes, COI and Cyt-b, were used for taxonomic identification. Microsatellite markers of Smax-04 and B12-I GT14 were excluded from analysis due to scoring issues. Data analysis was performed with the remaining six loci. Loci were highly polymorphic (average of 17.8 alleles per locus), indicating high genetic variability. Locus 3/20CA17, with high null allele frequency (>30%), significantly deviated from HW equilibrium. Pairwise comparison of the FST index showed significant differences between most of the surveyed sampling sites (P < 0.01). Cluster analysis evidenced the presence of three genetic groups among sampling sites. Significant genetic differentiation between Northern (Sea of Azov and Crimea) and Southern (Turkish Black Sea Coast) Black Sea sampling sites were detected. The Mantel test supported an isolation by distance model of population structure. These findings are vital for long-term sustainable management of the species and development of conservation programs. Moreover, generated mtDNA sequences would be useful for the establishment of a database for S. maximus. 相似文献
2.
Evaluating the sustainability of hunting is key to the conservation of species exploited for bushmeat. Researchers are often hampered by a lack of basic biological data, the usual response to which is to develop sustainability indices based on highly simplified population models. However, the standard indices in the bushmeat literature do not perform well under realistic conditions of uncertainty, bias in parameter estimation, and habitat loss. Another possible approach to estimating the sustainability of hunting under uncertainty is to use Bayesian statistics, but this is mathematically demanding. Red listing of threatened species has to be carried out in extremely data-poor situations: uncertainty has been incorporated into this process in a relatively simple and intuitive way using fuzzy numbers. The current methods for estimating sustainability of bushmeat hunting also do not incorporate spatial heterogeneity. No-take areas are one management tool that can address uncertainty in a spatially explicit way. 相似文献
3.
Martin SL Cakmak S Hebbern CA Avramescu ML Tremblay N 《International journal of biometeorology》2012,56(4):605-619
The environmental changes caused by climate change represent a significant challenge to human societies. One part of this
challenge will be greater heat-related mortality. Populations in the northern hemisphere will experience temperature increases
exceeding the global average, but whether this will increase or decrease total temperature-related mortality burdens is debated.
Here, we use distributed lag modeling to characterize temperature-mortality relationships in 15 Canadian cities. Further,
we examine historical trends in temperature variation across Canada. We then develop city-specific general linear models to
estimate change in high- and low-temperature-related mortality using dynamically downscaled climate projections for four future
periods centred on 2040, 2060 and 2080. We find that the minimum mortality temperature is frequently located at approximately
the 75th percentile of the city’s temperature distribution, and that Canadians currently experience greater and longer lasting
risk from cold-related than heat-related mortality. Additionally, we find no evidence that temperature variation is increasing
in Canada. However, the projected increased temperatures are sufficient to change the relative levels of heat- and cold-related
mortality in some cities. While most temperature-related mortality will continue to be cold-related, our models predict that
higher temperatures will increase the burden of annual temperature-related mortality in Hamilton, London, Montreal and Regina,
but result in slight to moderate decreases in the burden of mortality in the other 11 cities investigated. 相似文献
4.
Uptake and transport of foliar applied zinc (65Zn) in bread and durum wheat cultivars differing in zinc efficiency 总被引:5,自引:0,他引:5
Using two bread wheat (Triticum aestivum) and two durum wheat (Triticum durum) cultivars differing in zinc (Zn) efficiency, uptake and translocation of foliar-applied 65Zn were studied to characterize the role of Zn nutritional status of plants on the extent of phloem mobility of Zn and to determine the relationship between phloem mobility of Zn and Zn efficiency of the used wheat cultivars. Irrespective of leaf age and Zn nutritional status of plants, all cultivars showed similar Zn uptake rates with application of 65ZnSO4 to leaf strips in a short-term experiment. Also with supply of 65ZnSO4 by immersing the tip (3 cm) of the oldest leaf of intact plants, no differences in Zn uptake were observed among and within both wheat species. Further, Zn nutritional status did not affect total uptake of foliar applied Zn. However, Zn-deficient plants translocated more 65Zn from the treated leaf to the roots and remainder parts of shoots. In Zn-deficient plants about 40% of the total absorbed 65Zn was translocated from the treated leaf to the roots and remainder parts of shoots within 8 days while in Zn-sufficient plants the proportion of the translocated 65Zn of the total absorbed 65Zn was about 25%. Although differences in Zn efficiency existed between the cultivars did not affect the translocation and distribution of 65Zn between roots and shoots. Bread wheats compared to durum wheats, tended to accumulate more 65Zn in shoots and less 65Zn in roots, particularly under Zn-deficient conditions. The results indicate that differences in expression of Zn efficiency between and within durum and bread wheats are not related to translocation or distribution of foliar-applied 65Zn within plants. Differential compartementation of Zn at the cellular levels is discussed as a possible factor determining genotypic variation in Zn efficiency within wheat. 相似文献
5.
Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings 总被引:3,自引:0,他引:3
Cakmak I. Welch R.M. Erenoglu B. Römheld V. Norvell W.A. Kochian L.V. 《Plant and Soil》2000,219(1-2):279-284
Effect of varied zinc (Zn) supply (0, 0.1, 1, 5 M) on re-translocation of radio-labeled cadmium (109Cd) and rubidium (86Rb) from mature leaf to root and other parts of shoot was studied in 11-day-old durum wheat (Triticum durum cv. C-1252) plants grown in nutrient solution under controlled environmental conditions. Application of 109Cd and 86Rb was carried out by immersing the tips (3 cm) of mature leaf in radio-labeled solutions for 10 s at three different times over a 42 h period. Differences in Zn supply for 11 days did not affect plant growth nor did it cause visual leaf symptoms, such as necrosis and chlorosis, at either the lowest or the highest Zn supply. Only at the nil Zn supply (0 M), shoot and root dry weights tended to decrease and increase, respectively, causing a lower shoot/root dry weight ratio. Partitioning of more dry matter to roots rather than shoots, a typical phenomena for Zn-deficient plants in nutrient solution experiments, indicated existence of a mild Zn deficiency stress at the nil-Zn treatment. Irrespective of Zn supply, plants could, on average, retranslocate 3.8% and 38% of the total absorbed 109Cd and 86Rb from the treated leaf to roots and other parts of shoots within 42 h, respectively. At nil-Zn treatment, 2.8% of the total absorbed 109Cd was re-translocated from the treated leaf, particularly into roots. The highest re-translocation of 109Cd (6.5%) was found in plants supplied with 0.1 M Zn. Increases in Zn supply from 0.1 M reduced 109Cd re-translocation from 6.5% to 4.3% at 1 M Zn and 1.3% at 5 M Zn. With the exception of the nil-Zn treatment, the proportion of re-translocated 109Cd was greater in the remainder of the shoot than in the roots. Contrary to the 109Cd results, re-translocation of 86Rb was not (at 0, 0.1 and 1 M Zn), or only slightly (at 5 M), affected by changing Zn supply. The results indicate an inhibitory action of increased concentrations of Zn in shoot tissues on phloem-mediated Cd transport. This effect is discussed in relation to competitive inhibition of Cd loading into phloem sap by Zn. 相似文献
6.
7.
Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat 总被引:3,自引:0,他引:3
Aims
Heat stress is a growing concern in crop production because of global warming. In many cropping systems heat stress often occurs simultaneously with other environmental stress factors such as mineral nutrient deficiencies. This study aimed to investigate the role of adequate magnesium (Mg) nutrition in mitigating the detrimental effects of heat stress on wheat (Triticum aestivum) and maize (Zea mays).Methods
Wheat and maize plants were grown in solution culture with low or adequate Mg supply at 25/22 °C (light/dark). Half of the plants were, then, exposed to heat stress at 35/28 °C (light/dark). Development of leaf chlorosis and changes in root and shoot growth, chlorophyll and Mg concentrations as well as the activities of major antioxidative enzymes were quantified in the experimental plants. Additionally, maize plants were analyzed for the specific weights (e.g., dry or fresh weight per a given leaf surface area) and soluble carbohydrate concentrations of sink and source leaves.Results
Visual leaf symptoms of Mg deficiency were aggravated in wheat and maize when exposed to heat stress. In both species, root growth was more sensitive to Mg deficiency than shoot growth, and the shoot-to-root ratios peaked when heat stress was combined with Mg deficiency. Magnesium deficiency markedly reduced soluble carbohydrate concentrations in young leaf; but resulted in substantial increase in source leaves. Magnesium deficiency also increased activities of antioxidative enzymes, especially when combined with heat stress. The highest activities of superoxide dismutase (up to 80 % above the control), glutathione reductase (up to 250 % above the control) and ascorbate peroxidase (up to 300 % above the control) were measured when Mg-deficient plants were subjected to heat, indicating stimulated formation of reactive oxygen species (ROS) in Mg deficient leaves under heat stress.Conclusions
Magnesium deficiency increases susceptibility of wheat and maize plants to heat stress, probably by increasing oxidative cellular damage caused by ROS. Ensuring a sufficiently high Mg supply for crop plants through Mg fertilization is a critical factor for minimizing heat-related losses in crop production. 相似文献8.
The aim of this study was to investigate the in vivo effects of Tetra (Tetralet) antibiotic on the chromosomal aberrations (CA) in bone marrow cells of rats (Rattus norvegicus var. albinos). Tetra antibiotic significantly increased the percentage of abnormal cells and the chromosomal aberrations per cells (CA/cell) in bone marrow cells of rats at concentrations of 100 and 200 mg/kg body weight for 12 and 24 hours treatment periods for each. In addition, the percentage of abnormal cells and the CA/cell increased dose-dependently for 12 hours treatment period; In contrast, mitotic index (MI) was decreased when compared with negative control and solvent controls for 12 hours treatment period. However, MI increased depend on Tetra antibiotic dose for 24 hour treatment period. 相似文献
9.
Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes 总被引:1,自引:0,他引:1
Zvi Peleg Yehoshua Saranga Atilla Yazici Tzion Fahima Levent Ozturk Ismail Cakmak 《Plant and Soil》2008,306(1-2):57-67
Micronutrient malnutrition, and particularly deficiency in zinc (Zn) and iron (Fe), afflicts over three billion people worldwide, and nearly half of the world’s cereal-growing area is affected by soil Zn deficiency. Wild emmer wheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell.], the progenitor of domesticated durum wheat and bread wheat, offers a valuable source of economically important genetic diversity including grain mineral concentrations. Twenty two wild emmer wheat accessions, representing a wide range of drought resistance capacity, as well as two durum wheat cultivars were examined under two contrasting irrigation regimes (well-watered control and water-limited), for grain yield, total biomass production and grain Zn, Fe and protein concentrations. The wild emmer accessions exhibited high genetic diversity for yield and grain Zn, Fe and protein concentrations under both irrigation regimes, with a considerable potential for improvement of the cultivated wheat. Grain Zn, Fe and protein concentrations were positively correlated with one another. Although irrigation regime significantly affected ranking of genotypes, a few wild emmer accessions were identified for their advantage over durum wheat, having consistently higher grain Zn (e.g., 125 mg kg?1), Fe (85 mg kg?1) and protein (250 g kg?1) concentrations and high yield capacity. Plants grown from seeds originated from both irrigation regimes were also examined for Zn efficiency (Zn deficiency tolerance) on a Zn-deficient calcareous soil. Zinc efficiency, expressed as the ratio of shoot dry matter production under Zn deficiency to Zn fertilization, showed large genetic variation among the genotypes tested. The source of seeds from maternal plants grown under both irrigation regimes had very little effect on Zn efficiency. Several wild emmer accessions revealed combination of high Zn efficiency and drought stress resistance. The results indicate high genetic potential of wild emmer wheat to improve grain Zn, Fe and protein concentrations, Zn deficiency tolerance and drought resistance in cultivated wheat. 相似文献
10.
Potassium for better crop production and quality 总被引:3,自引:0,他引:3
Ismail Cakmak 《Plant and Soil》2010,326(1-2):1-2