首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Bcl-2 family members are central to the control of cell survival. Work of the last years has established that the function of these proteins can be regulated by mitogenic signaling cascades. Within the scope of this review, we will discuss the contribution of Bcl-2-dependent signaling pathways to cell survival by Raf kinases and also address the underlying mechanisms.  相似文献   
2.
在14只隔离灌流颈动脉窦区的大鼠,观察了窦内压(ISP)升高和灌流腺苷(adenosine,Ado)激活压力感受器时延髓内cfos蛋白的表达。结果显示:在孤束核、最后区、延髓腹外侧头端区和中缝苍白核可见Fos蛋白样免疫阳性反应(FLI)神经元分布,且其数量随ISP升高而增多。在给定ISP下,颈动脉窦内灌流Ado,可使上述区域中FLI表达明显增多。根据以上结果,得出如下结论:cfos在压力感受器反射延髓通路中的表达,可由ISP增高和灌流Ado而增强,表明Ado对压力感受器反射有易化作用。  相似文献   
3.
The c-Jun N-terminal kinases (JNKs) (also known as stress-activated protein kinases or SAPKs), members of the mitogen-activated protein kinase (MAPK) family, regulate gene expression in response to a variety of physiological and unphysiological stimuli. Gene knockout experiments and the use of dominant interfering mutants have pointed to a role for JNKs in the processes of cell differentiation and survival as well as oncogenic transformation. Direct analysis of the transforming potential of JNKs has been hampered so far by the lack of constitutively active forms of these kinases. Recently, such mutants have become available by fusion of the MAPK with its direct upstream activator kinase. We have generated a constitutively active SAPK beta-MKK7 hybrid protein and, using this constitutively active kinase, we are able to demonstrate the transforming potential of activated JNK, which is weaker than that of classical oncogenes such as Ras or Raf. The inducible expression of SAPK beta-MKK7 caused morphological transformation of NIH 3T3 fibroblasts. Additionally, these cells formed small foci of transformed cells and grew anchorage-independent in soft agar. Furthermore, similar to oncogenic Ras and Raf, the expression of activated SAPK beta resulted in the disassembly of F-actin stress fibers. Our data suggest that constitutive JNK activation elicits major aspects of cellular transformation but is unable to induce the complete set of changes which are required to establish the fully transformed phenotype.  相似文献   
4.
The p21-activated kinases (Paks) serve as effectors of the Rho family GTPases Rac and Cdc42. The six human Paks are divided into two groups based on sequence similarity. Group I Paks (Pak1 to -3) phosphorylate a number of substrates linking this group to regulation of the cytoskeleton and both proliferative and anti-apoptotic signaling. Group II Paks (Pak4 to -6) are thought to play distinct functional roles, yet their few known substrates are also targeted by Group I Paks. To determine if the two groups recognize distinct target sequences, we used a degenerate peptide library method to comprehensively characterize the consensus phosphorylation motifs of Group I and II Paks. We find that Pak1 and Pak2 exhibit virtually identical substrate specificity that is distinct from that of Pak4. Based on structural comparisons and mutagenesis, we identified two key amino acid residues that mediate the distinct specificities of Group I and II Paks and suggest a structural basis for these differences. These results implicate, for the first time, residues from the small lobe of a kinase in substrate selectivity. Finally, we utilized the Pak1 consensus motif to predict a novel Pak1 phosphorylation site in Pix (Pak-interactive exchange factor) and demonstrate that Pak1 phosphorylates this site both in vitro and in cultured cells. Collectively, these results elucidate the specificity of Pak kinases and illustrate a general method for the identification of novel sites phosphorylated by Paks.  相似文献   
5.
6.
Phospholipid-enriched membranes such as the plasma membrane can serve as direct regulators of kinase signaling. Pak1 is involved in growth factor signaling at the plasma membrane, and its dysregulation is implicated in cancer. Pak1 adopts an autoinhibited conformation that is relieved upon binding to membrane-bound Rho GTPases Rac1 or Cdc42, but whether lipids also regulate Pak1 in vivo is unknown. We show here that phosphoinositides, particularly PIP(2), potentiate Rho-GTPase-mediated Pak1 activity. A positively charged region of Pak1 binds to phosphoinositide-containing membranes, and this interaction is essential for membrane recruitment and activation of Pak1 in response to extracellular signals. Our results highlight an active role for lipids as allosteric regulators of Pak1 and suggest that Pak1 is a "coincidence detector" whose activation depends on GTPases present in phosphoinositide-rich membranes. These findings expand the role of phosphoinositides in kinase signaling and suggest how altered phosphoinositide metabolism may upregulate Pak1 activity in cancer cells.  相似文献   
7.
Using a set of specific kinase inhibitors we demonstrate that Raf kinases phosphorylate BAD at serines 112, 136 and 155 in vivo and in vitro. Exploring unexpected lipid binding properties of BAD we identified two lipid-binding domains located in its C-terminal part. Furthermore, we believe to have uncovered how phosphorylation-driven interaction with 14-3-3 regulates intracellular membrane localization of BAD. Observed activity of lipid-bound BAD as a membrane receptor for Bcl-XL opens new horizons in apoptosis research.  相似文献   
8.
BAD is a proapoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Although much attention has been devoted to the identification of phosphorylation sites in murine BAD, little data are available with respect to phosphorylation of human BAD protein. Using mass spectrometry, we identified here besides the established phosphorylation sites at serines 75, 99, and 118 several novel in vivo phosphorylation sites within human BAD (serines 25, 32/34, 97, and 124). Furthermore, we investigated the quantitative contribution of BAD targeting kinases in phosphorylating serine residues 75, 99, and 118. Our results indicate that RAF kinases represent, besides protein kinase A, PAK, and Akt/protein kinase B, in vivo BAD-phosphorylating kinases. RAF-induced phosphorylation of BAD was reduced to control levels using the RAF inhibitor BAY 43-9006. This phosphorylation was not prevented by MEK inhibitors. Consistently, expression of constitutively active RAF suppressed apoptosis induced by BAD and the inhibition of colony formation caused by BAD could be prevented by RAF. In addition, using the surface plasmon resonance technique, we analyzed the direct consequences of BAD phosphorylation by RAF with respect to association with 14-3-3 and Bcl-2/Bcl-XL proteins. Phosphorylation of BAD by active RAF promotes 14-3-3 protein association, in which the phosphoserine 99 represented the major binding site. Finally, we show here that BAD forms channels in planar bilayer membranes in vitro. This pore-forming capacity was dependent on phosphorylation status and interaction with 14-3-3 proteins. Collectively, our findings provide new insights into the regulation of BAD function by phosphorylation.Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli (13). This form of cellular suicide is widely observed in nature and is not only essential for embryogenesis, immune responses, and tissue homeostasis but is also involved in diseases such as tumor development and progression. Bcl-2 family proteins play a pivotal role in controlling programmed cell death. The major function of these proteins is to directly modulate outer mitochondrial membrane permeability and thereby regulate the release of apoptogenic factors from the intermembrane space into the cytoplasm (for a recent review, see Ref. 4). On the basis of various structural and functional characteristics, the Bcl-2 family of proteins is divided into three subfamilies, including proteins that either inhibit (e.g. Bcl-2, Bcl-XL, or Bcl-w) or promote programmed cell death (e.g. Bax, Bak, or Bok) (5, 6). A second subclass of proapoptotic Bcl-2 family members, the BH32-only proteins, comprises BAD, Bik, Bmf, Hrk, Noxa, truncated Bid, Bim, and Puma (4). BH3-only proteins share sequence homology only at the BH3 domain. The amphipathic helix formed by the BH3 domain (and neighboring residues) associates with a hydrophobic groove of the antiapoptotic Bcl-2 family members (7, 8). Originally, truncated Bid has been reported to interact with Bax and Bak (9), suggesting that some BH3-only proteins promote apoptosis via at least two different mechanisms: inactivating Bcl-2-like proteins by direct binding and/or by inducing modification of Bax-like molecules. BAD (Bcl-2-associated death promoter, Bcl-2 antagonist of cell death) was described to promote apoptosis by forming heterodimers with the prosurvival proteins Bcl-2 and Bcl-XL, thus preventing them from binding with Bax (10). More recently, two major models have been suggested for how BH3-only proteins may induce apoptosis. In the direct model, all BH3-only proteins promote cell death by directly binding and inactivating their specific anti-death Bcl-2 protein partner (11, 12). In this model, the relative killing potency of different BH3-only proteins is based on their affinities for antiapoptotic proteins. Thus, the activation of Bax/Bak would be mediated through their release from antiapoptotic counterparts. Contrary to this model, Kim et al. (13) provided support for an alternative hierarchy model, in which BH3-only proteins are divided into two distinct subsets. According to this model, the inactivator BH3-only proteins, like BAD, Noxa, and some others, respond directly to survival factors, resulting in phosphorylation, 14-3-3 binding, and suppression of the proapoptotic function. In the absence of growth factors, these proteins engage specifically their preferred antiapoptotic Bcl-2 proteins. The targeted Bcl-2 proteins then release the other subset of BH3-only proteins designated the activators (truncated Bid, Bim, and Puma) that in turn bind to and activate Bax and Bak.Non-phosphorylated BAD associated with Bcl-2/Bcl-XL is found at the outer mitochondrial membrane. Phosphorylation of specific serine residues, Ser-112 and Ser-136 of mouse BAD (mBAD) or the corresponding phosphorylation sites Ser-75 and Ser-99 of human BAD (hBAD), results in association with 14-3-3 proteins and subsequent relocation of BAD (14, 15). Phosphorylation of mBAD at Ser-155 (Ser-118 of hBAD) within its BH3 domain disrupts the association with Bcl-2 or Bcl-XL, promoting cell survival (16). Therefore, the phosphorylation status of BAD at these serine residues reflects a checkpoint for cell death or survival. Although the C-RAF kinase was the first reported BAD kinase (17), its target sites were not clearly defined. However, there is a growing body of evidence for direct participation of RAF in regulation of apoptosis via BAD (18, 19). In addition, Kebache et al. (20) reported recently that the interaction between adaptor protein Grb10 and C-RAF is essential for BAD-mediated cell survival. On the other hand, numerous reports suggest that PKA (21), Akt/PKB (22), PAK (18, 23, 24), Cdc2 (25), RSK (26, 27), CK2 (28), and PIM kinases (29) are involved in BAD phosphorylation as well. The involvement of c-Jun N-terminal kinase in BAD phosphorylation is controversially discussed. Whereas Donovan et al. (30) reported that c-Jun N-terminal kinase phosphorylates mBAD at serine 128, Zhang et al. (31) claimed that c-Jun N-terminal kinase is not a BAD-serine 128 kinase. On the other hand, it has been shown that c-Jun N-terminal kinase is able to suppress IL-3 withdrawal-induced apoptosis via phosphorylation of mBAD at threonine 201 (32). Thus, taken together, with respect to regulation of mBAD by phosphorylation, five serine phosphorylation sites (at positions 112, 128, 136, 155, and 170) and two threonines (117 and 201) have been identified so far. Intriguingly, only little data are available regarding the role of phosphorylation in regulation of hBAD protein, although significant structural differences between these two BAD proteins exist.During apoptosis, some members of the Bcl-2 family of proteins, such as Bax or Bak, have been shown to induce permeabilization of the outer mitochondrial membrane, allowing proteins in the mitochondrial intermembrane space to escape into the cytosol, where they can initiate caspase activation and cell death (for a review, see Refs. 33 and 34). Despite intensive investigation, the mechanism whereby Bax and Bak induce outer membrane permeability remains controversial (34). Based on crystal structure (35), it became evident that Bcl-XL has a pronounced similarity to the translocation domain of diphtheria toxin (36), a domain that can form pores in artificial lipid bilayers. This discovery provoked the predominant view that upon commitment to apoptosis, the proapoptotic proteins Bax and Bak also form pores in the outer mitochondrial membrane (37). As expected from the structural considerations, Bcl-XL was found to form channels in synthetic lipid membranes (38). Since then, other Bcl-2 family members like Bcl-2, Bax, and the BH3-only protein Bid have been reported to have channel-forming ability. These pores can be divided into two different types: proteinaceous channels of defined size and ion specificity (3842) and large lipidic pores that allow free diffusion of 2-megadalton macromolecules (43, 44). With respect to the BH3-only protein BAD, no pore-forming abilities have been reported so far, although human BAD has been found to possess per se high affinity for negatively charged phospholipids and liposomes, mimicking mitochondrial membranes (14).The RAF kinases (A-, B-, and C-RAF) play a central role in the conserved Ras-RAF-MEK-ERK signaling cascade and mediate cellular responses induced by growth factors (4547). Direct involvement of C-RAF in inhibition of proapoptotic properties of BAD established a link between signal transduction and apoptosis control (48, 49). However, the early works did not identify the exact RAF phosphorylation sites on BAD (17). Here we demonstrate that hBAD serves as a substrate of RAF isoforms. With respect to hBAD phosphorylation by PKA, Akt/PKB, and PAK1 in vivo, we observed different specificity compared with RAF kinases. hBAD phosphorylation by RAF was accompanied by reduced apoptosis in HEK293 cells (transformed human embryonic kidney cells) and NIH 3T3 cells (a mouse embryonic fibroblast cell line). Furthermore, we show that in vitro phosphorylation of hBAD by RAF at serines 75, 99, and 118 regulates the binding of 14-3-3 proteins and association with Bcl-2 and Bcl-XL. By use of mass spectrometry, we detected several novel in vivo phosphorylation sites of hBAD in addition to the established phosphorylation sites, serines 75, 99, and 118. Finally, we show here that hBAD forms channels in planar bilayer membranes in vitro. This pore-forming capacity was dependent on phosphorylation status and interaction with 14-3-3 proteins.  相似文献   
9.
10.
BAD is a Bcl-2 homology domain 3 (BH3)-only proapoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Binding of BAD to mitochondria is thought to be exclusively mediated by its BH3 domain. We show here that BAD binds to lipids with high affinities, predominantly to negatively charged phospholipids, such as phosphatidylserine, phosphatidic acid, and cardiolipin, as well as to cholesterol-rich liposomes. Two lipid binding domains (LBD1 and LBD2) with different binding preferences were identified, both located in the C-terminal part of the BAD protein. BAD facilitates membrane translocation of Bcl-XL in a process that requires LBD2. Integrity of LBD1 and LBD2 is also required for proapoptotic activity in vivo. Phosphorylation of BAD does not affect membrane binding but renders BAD susceptible to membrane extraction by 14-3-3 proteins. BAD can be removed efficiently by 14-3-3zeta, -eta, -tau and lesxs efficiently by other 14-3-3 isoforms. The assembled BAD.14-3-3 complex exhibited high affinity for cholesterol-rich liposomes but low affinity for mitochondrial membranes. We conclude that BAD is a membrane-associated protein that has the hallmarks of a receptor rather than a ligand. Lipid binding is essential for the proapoptotic function of BAD in vivo. The data support a model in which BAD shuttles in a phosphorylation-dependent manner between mitochondria and other membranes and where 14-3-3 is a key regulator of this relocation. The dynamic interaction of BAD with membranes is tied to activation and membrane translocation of Bcl-XL.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号