首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   4篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   4篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   9篇
  2007年   4篇
  2006年   7篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   8篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1981年   2篇
  1979年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有111条查询结果,搜索用时 453 毫秒
1.
Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCβ/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCβ, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCβ/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.  相似文献   
2.
It is shown that the reaction of RhCl3·3H2O with acetonitrile normally produces mixtures of mer- and fac-[RhCl3(CH3CN)3] (1a and 1b, respectively). The IR and 1H NMR spectra of these isomers were re-investigated. Their two-dimensional (103Rh,1H) NMR spectra were also recorded. Equilibrium and exchange studies of 1a and 1b in CD3C were performed. It was found that in 1a the exchange rate of the nitrile molecule trans to Cl is much faster than those of mutually trans nitriles. Also the nitrile molecules in 1b underwent fast exchange in CD3CN; however, their rate was slightly faster than that of the more labile CH3CN in 1a. The X-ray crystal structure of mer-[RhCl3(CH3CN)3]·CH3CN (1c) was determined. Crystal data: triclinic space group .  相似文献   
3.
The attachment of radiometals to monoclonal antibodies for medical applications requires extreme stability under physiological conditions, with no significant release of metal. Chelators that can hold radiometals like 111In, 67Ga, and 90Y with high stability under these conditions are essential for radiotherapy or immunoscintigraphy. 2-(p-Nitrobenzyl)-1,4,7,10-tetraazacyclododecane- N,N',N',N'-tetraacetic acid (nitrobenzyl-DOTA) is one of the most promising bifunctional chelating agents. A large-scale synthesis of nitrobenzyl-DOTA is described. The overall yield for the nine-step synthesis sequence starting from nitrophenylalanine is 5.6%. Synthesis of nitrobenzyl-DOTA according to the new procedure yields up to approximately 10 g without special apparatus. Both enantiomers of the chiral chelate nitrobenzyl-DOTA have been prepared, and their enantiomeric purity has been checked by chiral chromatography.  相似文献   
4.
5.
Therapeutic oligonucleotides including siRNA and immunostimulatory ligands of Toll-like receptors (TLR) or RIG-I like helicases (RLH) are a promising novel class of drugs. They are in clinical development for a broad spectrum of applications, e.g. as adjuvants in vaccines and for the immunotherapy of cancer. Species-specific immune activation leading to cytokine release is characteristic for therapeutic oligonucleotides either as an unwanted side effect or intended pharmacology. Reliable in vitro tests designed for therapeutic oligonucleotides are therefore urgently needed in order to predict clinical efficacy and to prevent unexpected harmful effects in clinical development. To serve this purpose, we here established a human whole blood assay (WBA) that is fast and easy to perform. Its response to synthetic TLR ligands (R848: TLR7/8, LPS: TLR4) was on a comparable threshold to the more time consuming peripheral blood mononuclear cell (PBMC) based assay. By contrast, the type I IFN profile provoked by intravenous CpG-DNA (TLR9 ligand) in humans in vivo was more precisely replicated in the WBA than in stimulated PBMC. Since Heparin and EDTA, but not Hirudin, displaced oligonucleotides from their delivery agent, only Hirudin qualified as the anticoagulant to be used in the WBA. The Hirudin WBA exhibited a similar capacity as the PBMC assay to distinguish between TLR7-activating and modified non-stimulatory siRNA sequences. RNA-based immunoactivating TLR7/8- and RIG-I-ligands induced substantial amounts of IFN-α in the Hirudin-WBA dependent on delivery agent used. In conclusion, we present a human Hirudin WBA to determine therapeutic oligonucleotide-induced cytokine release during preclinical development that can readily be performed and offers a close reflection of human cytokine response in vivo.  相似文献   
6.
The 26S proteasome is the molecular machine at the center of the ubiquitin proteasome system and is responsible for adjusting the concentrations of many cellular proteins. It is a drug target in several human diseases, and assays for the characterization of modulators of its activity are valuable. The 26S proteasome consists of two components: a core particle, which contains the proteolytic sites, and regulatory caps, which contain substrate receptors and substrate processing enzymes, including six ATPases. Current high-throughput assays of proteasome activity use synthetic fluorogenic peptide substrates that report directly on the proteolytic activity of the proteasome, but not on the activities of the proteasome caps that are responsible for protein recognition and unfolding. Here, we describe a simple and robust assay for the activity of the entire 26S proteasome using fluorescence anisotropy to follow the degradation of fluorescently labeled protein substrates. We describe two implementations of the assay in a high-throughput format and show that it meets the expected requirement of ATP hydrolysis and the presence of a canonical degradation signal or degron in the target protein.  相似文献   
7.
Analogs of pralidoxime, which is a commercial antidote for intoxication from neurotoxic organophosphorus compounds, were designed, synthesized, characterized, and tested as potential inhibitors or reactivators of acetylcholinesterase (AChE) using the Ellman’s test, nuclear magnetic resonance, and molecular modeling. These analogs include 1-methylpyridine-2-carboxaldehyde hydrazone, 1-methylpyridine-2-carboxaldehyde guanylhydrazone, and six other guanylhydrazones obtained from different benzaldehydes. The results indicate that all compounds are weak AChE reactivators but relatively good AChE inhibitors. The most effective AChE inhibitor discovered was the guanylhydrazone derived from 2,4-dinitrobenzaldehyde and was compared with tacrine, displaying similar activity to this reference material. These results indicate that guanylhydrazones as well as future similar derivatives may function as drugs for the treatment of Alzheimer's disease.  相似文献   
8.
Amylin is a pancreatic hormone involved in the regulation of glucose metabolism and homeostasis. Restoration of the post-prandial and basal levels of human amylin in diabetic individuals is a key in controlling glycemia, controlling glucagon, reducing the insulin dose and increasing satiety, among other physiologic functions. Human amylin has a high propensity to aggregate. We have addressed this issue by designing a liposomal human amylin formulation. Nanoparticles of multilamellar liposomes comprising human amylin were obtained with 53% encapsulation efficiency. The in vitro kinetic release assay shows a biphasic profile. The stabilization of the lipidic nanoparticle against freeze-drying was achieved by using mannitol as a cryoprotectant, as evidenced by morphological characterization. The effectiveness of the human amylin entrapped in lipidic nanoparticles was tested by the measurement of its pharmacological effect in vivo after subcutaneous administration in mice. Collectively these results demonstrate the compatibility of human amylin with the lipidic interface as an effective pharmaceutical delivery system.  相似文献   
9.
Interleukin-6 (IL-6) and ciliary neurotrophic factor (CNTF) are "4-helical bundle" cytokines of the IL-6 type family of neuropoietic and hematopoietic cytokines. IL-6 signals by induction of a gp130 homodimer (e.g. IL-6), whereas CNTF and leukemia inhibitory factor (LIF) signal via a heterodimer of gp130 and LIF receptor (LIFR). Despite binding to the same receptor component (gp130) and a similar protein structure, IL-6 and CNTF share only 6% sequence identity. Using molecular modeling we defined a putative LIFR binding epitope on CNTF that consists of three distinct regions (C-terminal A-helix/N-terminal AB loop, BC loop, C-terminal CD-loop/N-terminal D-helix). A corresponding gp130-binding site on IL-6 was exchanged with this epitope. The resulting IL-6/CNTF chimera lost the capacity to signal via gp130 on cells without LIFR, but acquired the ability to signal via the gp130/LIFR heterodimer and STAT3 on responsive cells. Besides identifying a specific LIFR binding epitope on CNTF, our results suggest that receptor recognition sites of cytokines are organized as modules that are exchangeable even between cytokines with limited sequence homology.  相似文献   
10.
Genetic evidence from mutant mice suggests that alpha(2)-HS glycoprotein/fetuin-A (Ahsg) is a systemic inhibitor of precipitation of basic calcium phosphate preventing unwanted calcification. Using electron microscopy and dynamic light scattering, we demonstrate that precipitation inhibition by Ahsg is caused by the transient formation of soluble, colloidal spheres, containing Ahsg, calcium, and phosphate. These "calciprotein particles" of 30-150 nm in diameter are initially amorphous and soluble but turn progressively more crystalline and insoluble in a time- and temperature-dependent fashion. Solubilization in Ahsg-containing calciprotein particles provides a novel conceptual framework to explain how insoluble calcium precipitates may be transported and removed in the bodies of mammals. Mutational analysis showed that the basic calcium phosphate precipitation inhibition activity resides in the amino-terminal cystatin-like domain D1 of Ahsg. A structure-function analysis of wild type and mutant forms of cystatin-like domains from Ahsg, full-length fetuin-B, histidine-rich glycoprotein, and kininogen demonstrated that Ahsg domain D1 is most efficient in inhibiting basic calcium phosphate precipitation. The computer-modeled domain structures suggest that a dense array of acidic residues on an extended beta-sheet of the cystatin-like domain Ahsg-D1 mediates efficient inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号