首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   24篇
  2024年   1篇
  2023年   2篇
  2022年   13篇
  2021年   8篇
  2020年   10篇
  2019年   12篇
  2018年   15篇
  2017年   11篇
  2016年   12篇
  2015年   14篇
  2014年   13篇
  2013年   11篇
  2012年   10篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   9篇
  2007年   10篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1992年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
1.
2.
Riparian forests play an important role in stream ecosystems, as they support biodiversity, reduce water erosion, and provide litter that fuels aquatic biota. However, they are affected by great array of anthropogenic threats (e.g., fire, logging, and organic pollution), which alter species composition and their physical structure. Although forest recovery after disturbance such as logging can take decades, the legacy of forest clear-cut logging on key processes in tropical riparian ecosystems is mostly unknown. Here, we investigated how litter inputs (leaves, twigs, and reproductive parts) and storage, key processes for carbon and nutrient recycling and for forest and stream biota, are influenced by riparian vegetation undergoing succession (after 28 years from logging) through the comparison of reference and logged forest sites in the Cerrado biome. Litterfall was overall similar between forest types, but litterfall of twigs was twofold higher at logged than reference sites. Similarly, litter inputs from the bank to the stream (i.e., lateral inputs) and streambed storage were 50–60% higher at logged than reference sites. The higher litterfall observed in logged forests could be related to higher proportion of tree species that are characteristic of primary and secondary successional stages, including fast-growing and liana species, which often are more productive and common in anthropogenic areas. Our results showed that the legacy impact of clear-cut logging, even if residual woody vegetation is maintained in riparian buffers, can shift the type, quantity, and seasonality of litter subsidies to tropical streams. This knowledge should be considered within the context of management and conservation of communities and ecosystem processes in the forest-stream interfaces.  相似文献   
3.
The increase in severity of droughts associated with greater mortality and reduced vegetation growth is one of the main threats to tropical forests. Drought resilience of tropical forests is affected by multiple biotic and abiotic factors varying at different scales. Identifying those factors can help understanding the resilience to ongoing and future climate change. Altitude leads to high climate variation and to different forest formations, principally moist or dry tropical forests with contrasted vegetation structure. Each tropical forest can show distinct responses to droughts. Locally, topography is also a key factor controlling biotic and abiotic factors related to drought resilience in each forest type. Here, we show that topography has key roles controlling biotic and abiotic factors in each forest type. The most important abiotic factors are soil nutrients, water availability, and microclimate. The most important biotic factors are leaf economic and hydraulic plant traits, and vegetation structure. Both dry tropical forests and ridges (steeper and drier habitats) are more sensitive to droughts than moist tropical forest and valleys (flatter and wetter habitats). The higher mortality in ridges suggests that conservative traits are not sufficient to protect plants from drought in drier steeper habitats. Our synthesis highlights that altitude and topography gradients are essential to understand mechanisms of tropical forest''s resilience to future drought events. We described important factors related to drought resilience, however, many important knowledge gaps remain. Filling those gaps will help improve future practices and studies about mitigation capacity, conservation, and restoration of tropical ecosystems.  相似文献   
4.
The prokaryotic diversity associated with organic household waste (OHW), leachate (start-up inoculum), and mesophilic anaerobic digestion processes in the degradation of OHW for 44 and 90 days was investigated using a culture-independent approach. Bacterial and archaeal 16S rRNA and mcrA gene clone libraries were constructed from community DNA preparations. Bacterial clones were affiliated with 13 phyla, of which Firmicutes, Proteobacteria, and Bacteroidetes were represented in all libraries, whereas Actinobacteria, Thermotogae, Lentisphaerae, Acidobacteria, Chloroflexi, Cyanobacteria, Synergistetes, Spirochaetes, Deferribacteres, and Deinococcus-Thermus were exclusively identified in a single library. Within the Archaea domain, the Euryarchaeota phylum was the only one represented. Corresponding sequences were associated with the following orders of hydrogenotrophic methanogens: Methanomicrobiales (Methanoculleus genus) and Methanobacteriales (Methanosphaera and Methanobacterium genera). One archaeal clone was not affiliated with any order and may represent a novel taxon. Diversity indices showed greater diversity of Bacteria when compared to methanogenic Archaea.  相似文献   
5.
Limnology - Aquatic macroinvertebrate communities are dependent on intrinsic environmental characteristics and biological interactions in microhabitat systems. We investigated the...  相似文献   
6.
Knowledge of how animal species use food resources available in the environment can increase our understanding of many ecological processes. However, obtaining this information using traditional methods is difficult for species feeding on a large variety of food items in highly diverse environments. We amplified the DNA of plants for 306 scat and 40 soil samples, and applied an environmental DNA metabarcoding approach to investigate food preferences, degree of diet specialization and diet overlap of seven herbivore rodent species of the genus Ctenomys distributed in southern and midwestern Brazil. The metabarcoding approach revealed that these species consume more than 60% of the plant families recovered in soil samples, indicating generalist feeding habits of ctenomyids. The family Poaceae was the most common food resource retrieved in scats of all species as well in soil samples. Niche overlap analysis indicated high overlap in the plant families and molecular operational taxonomic units consumed, mainly among the southern species. Interspecific differences in diet composition were influenced, among other factors, by the availability of resources in the environment. In addition, our results provide support for the hypothesis that the allopatric distributions of ctenomyids allow them to exploit the same range of resources when available, possibly because of the absence of interspecific competition.  相似文献   
7.
The purpose of this study was to identify the gait strategies in women with mild and moderate knee osteoarthritis (OA). Forty women diagnosed with OA of the knee and 40 healthy women participated in the study. Toe-out progression angle, trunk lateral lean, hip internal abduction moment and gait speed were measured using Qualisys ProReflex System and two force plates. Principal component analysis was applied to extract features from the gait waveforms data that characterized the waveforms main modes of temporal variation. Discriminant analysis with a stepwise model was conducted to determine which strategies could best discriminate groups. According to the discriminant model, the PC2 of the internal abduction moment of the hip and the gait speed were the most discriminatory variables between the groups. The OA group showed decreased gait speed, decreased hip internal abduction moment during the loading response phase, and increased hip internal abduction moment during the mid and terminal stance phases. Interventions that may increase hip internal abduction moment, such as the strengthening of the hip abductors muscles, may benefit women with knee OA. Training slower than normal gait speeds must be considered in light of potential adverse implications on overall physical function, daily tasks, and safety.  相似文献   
8.
The emergence of next-generation sequencing technologies allowed access to the vast amounts of information that are contained in the human genome. This information has contributed to the understanding of individual and population-based variability and improved the understanding of the evolutionary history of different human groups. However, the genome of a representative of the Amerindian populations had not been previously sequenced. Thus, the genome of an individual from a South American tribe was completely sequenced to further the understanding of the genetic variability of Amerindians. A total of 36.8 giga base pairs (Gbp) were sequenced and aligned with the human genome. These Gbp corresponded to 95.92% of the human genome with an estimated miscall rate of 0.0035 per sequenced bp. The data obtained from the alignment were used for SNP (single-nucleotide) and INDEL (insertion-deletion) calling, which resulted in the identification of 502,017 polymorphisms, of which 32,275 were potentially new high-confidence SNPs and 33,795 new INDELs, specific of South Native American populations. The authenticity of the sample as a member of the South Native American populations was confirmed through the analysis of the uniparental (maternal and paternal) lineages. The autosomal comparison distinguished the investigated sample from others continental populations and revealed a close relation to the Eastern Asian populations and Aboriginal Australian. Although, the findings did not discard the classical model of America settlement; it brought new insides to the understanding of the human population history. The present study indicates a remarkable genetic variability in human populations that must still be identified and contributes to the understanding of the genetic variability of South Native American populations and of the human populations history.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号