首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2015年   1篇
  2012年   1篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有33条查询结果,搜索用时 62 毫秒
1.
Cell apoptosis and proliferation are two counterparts in sharing the responsibility for maintaining normal tissue homeostasis. In recent years, the process of the programmed cell death has gained much interest because of its influence on malignant cell growth and other pathological states. Apoptosis is characterized by a distinct series of morphological and biochemical changes that result in cell shrinkage, DNA breakdown, and, ultimately, phagocytic death. Diverse external and internal stimuli trigger apoptosis, and enhanced K+ efflux has been shown to be an essential mediator of not only early apoptotic cell shrinkage, but also of downstream caspase activation and DNA fragmentation. The goal of this review is to discuss the role(s) played by K+ transport or flux across the plasma membrane in the regulation of the apoptotic volume decrease and apoptosis. Attention has also been paid to the role of inner mitochondrial membrane ion transport in the regulation of mitochondrial permeability and apoptosis. We provide specific examples of how deregulation of the apoptotic process contributes to pulmonary arterial medial hypertrophy, a major pathological feature in patients with pulmonary arterial hypertension. Finally, we discuss the targeting of K+ channels as a potential therapeutic tool in modulating apoptosis to maintain the balance between cell proliferation and cell death that is essential to the normal development and function of an organism.  相似文献   
2.
3.
The ability to empathize with other people is a critical component of human social relationships. Empathic processing varies across the human population, however it is currently unclear how personality traits are associated with empathic processing. This study was designed to test the hypothesis that specific personality traits are associated with behavioral and biological indicators of improved empathy. Extraversion and Agreeableness are personality traits designed to measure individual differences in social-cognitive functioning, however each trait-dimension includes elements that represent interpersonal social functioning and elements that do not represent interpersonal social functioning. We tested the prediction that interpersonal elements of Extraversion (Warmth) and Agreeableness (Altruism) are associated with empathy and non-interpersonal elements of Extraversion and Agreeableness are not associated with empathy. We quantified empathic processing behaviorally (empathic accuracy task using video vignettes) and within the brain (fMRI and an emotional perspective taking task) in 50 healthy subjects. Converging evidence shows that highly warm and altruistic people are well skilled in recognizing the emotional states of other people and exhibit greater activity in brain regions important for empathy (temporoparietal junction and medial prefrontal cortex) during emotional perspective taking. A mediation analysis further supported the association between warm-altruistic personality and empathic processing; indicating that one reason why highly warm-altruistic individuals may be skilled empathizers is that they engage the temporoparietal junction and medial prefrontal cortex more. Together, these findings advance the way the behavioral and neural basis of empathy is understood and demonstrates the efficacy of personality scales to measure individual differences in interpersonal social function.  相似文献   
4.
A member of the TNF receptor family, the p75 neurotrophin receptor (p75(NTR)) has been previously shown to play a role in the regulation of fibrin deposition in the lung. However, the role of p75(NTR) in the regulation of pulmonary vascular tone in the lung is unknown. In the present study, we evaluated the expression of p75(NTR) in mouse pulmonary arteries and the putative role of p75(NTR) in modulating pulmonary vascular tone and agonist responsiveness using wild-type (WT) and p75(NTR) knockout (p75(-/-)) mice. Our data indicated that p75(NTR) is expressed in both smooth muscle and endothelial cells within the pulmonary vascular wall in WT mice. Pulmonary artery rings from p75(-/-) mice exhibited significantly elevated active tension due to endothelin-1-mediated Ca(2+) influx. Furthermore, the contraction due to capacitative Ca(2+) entry (CCE) in response to phenylephrine-mediated active depletion of intracellular Ca(2+) stores was significantly enhanced compared with WT rings. The contraction due to CCE induced by passive store depletion, however, was comparable between WT and p75(-/-) rings. Active tension induced by serotonin, U-46619 (a thromboxane A(2) analog), thrombin, 4-aminopyridine (a K(+) channel blocker), and high extracellular K(+) in p75(-/-) rings was similar to that in WT rings. Deletion of p75(NTR) did not alter pulmonary vasodilation to sodium nitroprusside (a nitric oxide donor). These data suggest that intact p75(NTR) signaling may play a role in modulating pulmonary vasoconstriction induced by endothelin-1 and by active store depletion.  相似文献   
5.
Stimulation of the interleukin-2 (IL-2) receptor results in phosphorylation and activation of cytosolic Raf-1 serine/threonine kinase. Herein, we report that enzymatically active Raf-1 is physically associated with the IL-2 receptor beta chain (p75) in T-cell blasts. Following stimulation with IL-2, Raf-1 dissociates from the IL-2 receptor complex and translocates to the cytosol. Genistein, a protein tyrosine kinase inhibitor, prevents the dissociation of enzymatically active Raf-1 from the ligand-stimulated IL-2 receptor complex. These data favor a model of IL-2 receptor activation in which an IL-2-activated protein tyrosine kinase phosphorylates the IL-2 receptor and/or receptor-bound Raf-1. Following tyrosine phosphorylation, enzymatically active Raf-1 dissociates from the IL-2 receptor and translocates into the cytosol.  相似文献   
6.
7.
Integrase is one of three enzymes expressed by HIV and represents a validated target for therapy. Previous reports have demonstrated that the diketoacid-based chemotype is a useful starting point for the design of inhibitors of this enzyme. In this study, one of the ketone groups is replaced by a benzylamide resulting in a new potent chemotype. A preliminary SAR study is carried out to investigate the substitution requirements on the phenyl ring and methylene group of the benzylamide.  相似文献   
8.
Pulmonary and systemic arterial hypertension are associated with profound alterations in Ca(2+) homeostasis and smooth muscle cell proliferation. A novel class of non-selective cation channels, the transient receptor potential (TRP) channels, have emerged at the forefront of research into hypertensive disease states. TRP channels are identified as molecular correlates for receptor-operated and store-operated cation channels in the vasculature. Over 10 TRP isoforms are identified at the mRNA and protein expression levels in the vasculature. Current research implicates upregulation of specific TRP isoforms to be associated with increased Ca(2+) influx, characteristic of vasoconstriction and vascular smooth muscle cell proliferation. TRP channels are implicated as Ca(2+) entry pathways in pulmonary hypertension and essential hypertension. Caveolae have recently emerged as membrane microdomains in which TRP channels may be co-localized with the endoplasmic reticulum in both smooth muscle and endothelial cells. Such enhanced expression and function of TRP channels and their localization in caveolae in pathophysiological hypertensive disease states highlights their importance as potential targets for pharmacological intervention.  相似文献   
9.
Hypoxic pulmonary vasoconstriction is caused by a rise in cytosolic Ca(2+) ([Ca(2+)](cyt)) in pulmonary artery smooth muscle cells (PASMC) via multiple mechanisms. PASMC consist of heterogeneous phenotypes defined by contractility, proliferation, and apoptosis as well as by differences in expression and function of various genes. In rat PASMC, hypoxia-mediated decrease in voltage-gated K(+) (Kv) currents (I(K(V))) and increase in [Ca(2+)](cyt) were not uniformly distributed in all PASMC tested. Acute hypoxia decreased I(K(V)) and increased [Ca(2+)](cyt) in approximately 46% and approximately 53% of PASMC, respectively. Using combined techniques of single-cell RT-PCR and patch clamp, we show here that mRNA expression level of Kv1.5 in hypoxia-sensitive PASMC (in which hypoxia reduced I(K(V))) was much greater than in hypoxia-insensitive cells (in which hypoxia negligibly affected I(K(V))). These results demonstrate that 1) different PASMC express different Kv channel alpha- and beta-subunits, and 2) the sensitivity of a PASMC to acute hypoxia partially depends on the expression level of Kv1.5 channels; hypoxia reduces whole-cell I(K(V)) only in PASMC that express high level of Kv1.5. In addition, the acute hypoxia-mediated changes in [Ca(2+)](cyt) also vary in different PASMC. Hypoxia increases [Ca(2+)](cyt) only in 34% of cells tested, and the different sensitivity of [Ca(2+)](cyt) to hypoxia was not related to the resting [Ca(2+)](cyt). An intrinsic mechanism within each individual cell may be involved in the heterogeneity of hypoxia-mediated effect on [Ca(2+)](cyt) in PASMC. These data suggest that the heterogeneity of PASMC may partially be related to different expression levels and functional sensitivity of Kv channels to hypoxia and to differences in intrinsic mechanisms involved in regulating [Ca(2+)](cyt).  相似文献   
10.
A proper rate of programmed cell death or apoptosis is required to maintain normal tissue homeostasis. In disease states such as cancer and some forms of hypertension, apoptosis is blocked, resulting in hyperplasia. In neurodegenerative diseases, uncontrolled apoptosis leads to loss of brain tissue. The flow of ions in and out of the cell and its intracellular organelles is becoming increasingly linked to the generation of many of these diseased states. This review focuses on the transport of K(+) across the cell membrane and that of the mitochondria via integral K(+)-permeable channels. We describe the different types of K(+) channels that have been identified, and investigate the roles they play in controlling the different phases of apoptosis: early cell shrinkage, cytochrome c release, caspase activation, and DNA fragmentation. Attention is also given to K(+) channels on the inner mitochondrial membrane, whose activity may underlie anti- or pro-apoptotic mechanisms in neurons and cardiomyocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号