首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  1998年   1篇
  1971年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Involvement of rabphilin-3A-like (RPH3AL), or Noc2, the potential effector of Ras-associated binding proteins Rab3A and Rab27A in the regulation of exocytotic processes in the endocrine pancreas has been demonstrated in experimental models. Noc2 expression together with other regulatory molecules of the exocytotic machinery in human tissues, however, has not been studied. We evaluated immunohistochemical expression of the key molecules of the exocytotic machinery, Noc2, Rab3A, Rab27A, and RIM2, together with the characteristic islet cell hormones, insulin and glucagon in normal and endocrine tumor tissues of human pancreas. Normal pancreatic islets were stained for all of these proteins and showed strong cytoplasmic localization. A similar pattern of strong cytoplasmic expression of these proteins was observed in the majority of endocrine tumors. By contrast, the exocrine portions of normal appearing pancreas completely lacked Rab27A staining and showed decreased expression of the proteins, Noc2, Rab3A, and RIM2. The staining pattern of Noc2 and Rab27A was similar to the staining pattern of glucagon-producing cells within the islets. The concomitant expression of Noc2 with these molecules suggests that Noc2 may serve as an effector for Rab3A and Rab27A and that it is involved in the regulation of exocytosis of the endocrine pancreas in humans.  相似文献   
2.
Bioluminescence in beetles is found mainly in the Elateroidea superfamily (Elateridae, Lampyridae and Phengodidae). The Neotropical region accounts for the richest diversity of bioluminescent species in the world with about 500 described species, most occurring in the Amazon, Atlantic rainforest and Cerrado (savanna) ecosystems in Brazil. The origin and evolution of bioluminescence, as well as the taxonomic status of several Neotropical taxa in these families remains unclear. In order to contribute to a better understanding of the phylogeny and evolution of bioluminescent Elateroidea we sequenced and analyzed sequences of mitochondrial NADH2 and the nuclear 28S genes and of the cloned luciferase sequences of Brazilian species belonging to the following genera: (Lampyridae) Macrolampis, Photuris, Amydetes, Bicellonycha, Aspisoma, Lucidota, Cratomorphus; (Elateridae) Conoderus, Pyrophorus, Hapsodrilus, Pyrearinus, Fulgeochlizus; and (Phengodidae) Pseudophengodes, Phrixothrix, Euryopa and Brasilocerus. Our study supports a closer phylogenetic relationship between Elateridae and Phengodidae as other molecular studies, in contrast with previous morphologic and molecular studies that clustered Lampyridae/Phengodidae. Molecular data also supported division of the Phengodinae subfamily into the tribes Phengodini and Mastinocerini. The position of the genus Amydetes supports the status of the Amydetinae as a subfamily. The genus Euryopa is included in the Mastinocerini tribe within the Phengodinae/Phengodidae. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
Early biochemical analyses of metabolic pathways assumed that the free diffusion of substrates and enzymes in an evenly mixed cellular space provided the interactions that enabled reactions to proceed. Metabolic complexes have since been shown to assemble and disassemble in response to changes in cellular conditions, and in turn, to channel metabolic intermediates within discreet cellular compartments, allowing for the efficient use or storage of energy. A fundamental component to the formation of metabolic complexes and the channeling of metabolites is the translocation of enzymes in response to specific extra- and intracellular signals. These generalities play an important role in the metabolism of glucose to glycogen within skeletal muscle and liver. In this review, the similarities and differences in skeletal muscle and liver glucose metabolism with regards to glucose transport and intracellular processing will be addressed during the fasted to fed transition. More specifically, the importance of isoform expression and protein translocation in the tissue specific control of glucose homeostasis will be covered.  相似文献   
4.
The ability to discriminate between galactose and N- acetylgalactosamine, observed in some lectins, is crucial for their biological activity as well as their usefulness as tools in biology and medicine. However, the molecular basis of differential binding of lectins to these two sugars is poorly understood. Peanut agglutinin (PNA) is one of the few galactose-specific legume lectins which does not bind N- acetylgalactosamine at all and is, therefore, ideal for the study of the basis of specificity towards C-2 substituted derivatives of galactopyranosides. Examination of the three-dimensional structure of PNA in complex with lactose revealed the presence of both a longer loop and bulkier residues in the region surrounding the C-2 hydroxyl of the galactopyranoside ring, which can sterically prevent the accommodation of a bulky substituent in this position. One such residue, is a glutamic acid at position 129 which protrudes into the binding site and perhaps directly obstructs any substitution at the C-2 position. Two mutants in bacterially expressed PNA were therefore constructed. These were E129D and E129A, in which Glu129 was replaced by Asp and Ala, respectively. The specificity of the mutants for galactose, galactosamine, and N- acetylgalactosamine was examined through observing the inhibition of hemagglutination and binding of the lectin to immobilized asialofetuin. The results showed that the affinity of E129A and E129D for C-2-substituted derivatives of the galactose varies. The mutant E129D showed significant binding towards N- acetylgalactosamine, suggesting that the residue Glu 129 is crucial in imparting exclusive galactose-specificity upon PNA. This study not only attempts to provide an explanation for the inability of PNA to accommodate C-2-substituted derivatives at its primary subsite, but also seeks to present a basis for engineering lectins with altered specificities.   相似文献   
5.
6.
Adipocytes express the rate-limiting enzymes required for glycogen metabolism and increase glycogen synthesis in response to insulin. However, the physiological function of adipocytic glycogen in vivo is unclear, due in part to the low absolute levels and the apparent biophysical constraints of adipocyte morphology on glycogen accumulation. To further study the regulation of glycogen metabolism in adipose tissue, transgenic mice were generated that overexpressed the protein phosphatase-1 (PP1) glycogen-targeting subunit (PTG) driven by the adipocyte fatty acid binding protein (aP2) promoter. Exogenous PTG was detected in gonadal, perirenal, and brown fat depots, but it was not detected in any other tissue examined. PTG overexpression resulted in a modest redistribution of PP1 to glycogen particles, corresponding to a threefold increase in the glycogen synthase activity ratio. Glycogen synthase protein levels were also increased twofold, resulting in a combined greater than sixfold enhancement of basal glycogen synthase specific activity. Adipocytic glycogen levels were increased 200- to 400-fold in transgenic animals, and this increase was maintained to 1 yr of age. In contrast, lipid metabolism in transgenic adipose tissue was not significantly altered, as assessed by lipogenic rates, weight gain on normal or high-fat diets, or circulating free fatty acid levels after a fast. However, circulating and adipocytic leptin levels were doubled in transgenic animals, whereas adiponectin expression was unchanged. Cumulatively, these data indicate that murine adipocytes are capable of storing far higher levels of glycogen than previously reported. Furthermore, these results were obtained by overexpression of an endogenous adipocytic protein, suggesting that mechanisms may exist in vivo to maintain adipocytic glycogen storage at a physiological set point.  相似文献   
7.

Background  

An early dispersal of biologically and behaviorally modern humans from their African origins to Australia, by at least 45 thousand years via southern Asia has been suggested by studies based on morphology, archaeology and genetics. However, mtDNA lineages sampled so far from south Asia, eastern Asia and Australasia show non-overlapping distributions of haplogroups within pan Eurasian M and N macrohaplogroups. Likewise, support from the archaeology is still ambiguous.  相似文献   
8.
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号