首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  2006年   1篇
  2002年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1984年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
Nonsense mutations in the dystrophin gene are the cause of Duchenne muscular dystrophy (DMD) in 10–15% of patients. In such an event, one approach to gene therapy for DMD is the use of suppressor tRNAs to overcome the premature termination of translation of the mutant mRNA. We have carried out cotransfection of the HeLa cell culture with constructs containing a suptRNA gene (pcDNA3suptRNA) and a marker LacZ gene (pNTLacZhis) using their polymer VSST-525 complexes. It was found that the number of cells producing -galactosidase depends inversely on the dose of the suptRNA gene. A single in vivo injection of the construct providing for expression of the suptRNAochre gene into mdx mouse muscle resulted in the production of dystrophin in 2.5% of fibers. This suggests that suppressor tRNAs are applicable in gene therapy for hereditary diseases caused by nonsense mutations.  相似文献   
2.
In order to look more closely at a well-conserved region in T7 RNA polymerase (T7 RNAP) containing, as shown earlier, the functionally essential residues Pro-563 and Tyr-571, we used targeted mutagenesis to change those residues within this region that are invariant in all single-subunit RNA polymerases, and characterized the mutant enzymes in vitro. The most interesting finding of this study was the crucial importance of the acidic group of Asp-569. In addition, we have shown that the phenolic ring is the most significant functional group of Tyr-571, with the hydroxy group also contributing to promoter binding.  相似文献   
3.
The plasmid pET-21d-2c-5BDelta55 effectively expressing a C-terminally truncated form (NS5BDelta55) of the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) was constructed. It was derived from pET-21d-5BDelta55 plasmid and contained six mutations in the ATG-start codon region and an additional cistron upstream the target gene. The C-terminally His-tagged NS5BDelta55 protein was expressed in Rosetta(DE3) Escherichia coli strain bearing an additional pRARE plasmid encoding extra copies of rare tRNAs. The yield of the target enzyme exceeded by a factor of 29 the yield of NS5BDelta55 protein expressed from the parental pET-21d-5BDelta55 plasmid (5 mg/L). The increase in the protein yield could be explained by facilitated protein translation initiation, resulted from disruption of the stable secondary mRNA structure. The pET-21d-2c-5BDelta55 plasmid yielded one third amount of the protein when expressed in BL-21(DE3) strain, indicating that the pRARE plasmid is required for a high-level expression of NS5BDelta55 protein. The 29-fold enhancement of the protein yield was accompanied by only a 2.5-fold increase of the corresponding mRNA level. The expression of another HCV NS5A protein His-tagged at the C-terminus in the developed system yielded a similar amount of the protein (4 mg/L), whereas its N-terminally His-tagged counterpart was obtained in a 30 mg/L yield. The NS5A protein purified under denaturing conditions and renatured in solution inhibited the HCV RdRp and was a substrate for human casein kinase II.  相似文献   
4.
Random mutagenesis of the gene for bacteriophage T7 RNA polymerase was used to identify functionally essential amino acid residues of the enzyme. A two-plasmid system was developed that permits the straightforward isolation of T7 RNA polymerase mutants that had lost almost all catalytic activity. It was shown that substitutions of Thr and Ala for Pro at the position 563, Ser for Tyr571, Pro for Thr636, Asp for Tyr639 and of Cys for Phe646 resulted in inactivation of the enzyme. It is noteworthy that all these mutations are limited to two short regions that are highly conservative in sequences of monomeric RNA polymerases.  相似文献   
5.
A highly selective affinity labeling of T7 RNA polymerase with the o-formylphenyl ester of GMP and [alpha-32P]UTP was carried out. The site of the labeling was located using limited cleavages with hydroxylamine, bromine, N-chlorosuccinimide and cyanogene bromide and was identified as the Lys631 residue. Site-directed mutagenesis using synthetic oligonucleotides was used to substitute Lys631 by a Gly, Leu or Arg residue. Kinetic studies of the purified mutant enzymes showed alterations of their polymerizing activity. For the Lys----Gly mutant enzyme, anomalous template binding was observed.  相似文献   
6.
DNA-directed RNA polymerase from Escherichia coli can break down RNA by catalysing the reverse of the reaction: NTP + (RNA)n = (RNA)n+1 + PPi where n indicates the number of nucleotide residues in the RNA molecule, to yield nucleoside triphosphates. This reaction requires the ternary complex of the polymerase with template DNA and the RNA that it has synthesized. It is now shown that methylenebis(arsonic acid) [CH2(AsO3H2)2], arsonomethylphosphonic acid (H2O3As-CH2-PO3H2) and arsonoacetic acid (H2O3As-CH2-CO2H) can replace pyrophosphate in this reaction. When they do so, the low-Mr products of the reaction prove to be nucleoside 5'-phosphates, so that the arsenical compounds endow the polymerase with an artificial exonuclease activity, an effect previously found by Rozovskaya, Chenchik, Tarusova, Bibilashvili & Khomutov [(1981) Mol. Biol. (Moscow) 15, 636-652] for phosphonoacetic acid (H2O3P-CH2-CO2H). This is explained by instability of the analogues of nucleoside triphosphates believed to be the initial products. Specificity of recognition of pyrophosphate is discussed in terms of the sites, beta and gamma, for the -PO3H2 groups of pyrophosphate that will yield P-beta and P-gamma of the nascent nucleoside triphosphate. Site gamma can accept -AsO3H2 in place of -PO3H2, but less well; site beta can accept both, and also -CO2H. We suggest that partial transfer of an Mg2+ ion from the attacking pyrophosphate to the phosphate of the internucleotide bond of the RNA may increase the nucleophilic reactivity of the pyrophosphate and the electrophilicity of the diester, so that the reaction is assisted.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号