首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  2012年   1篇
  2009年   2篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1996年   1篇
  1949年   2篇
  1917年   2篇
  1911年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Amino acid changes S180A (S-->A at site 180), H197Y, Y277F, T285A, and A308S are known to shift the maximum wavelength of absorption (lambda max) of red and green visual pigments toward blue, essentially in an additive fashion. To test the generality of this "five-sites" rule, we have determined the partial amino acid sequences of red and green pigments from five mammalian orders (Artiodactyla, Carnivora, Lagomorpha, Perissodactyla, and Rodentia). The result suggests that cat (Felis catus), dog (Canis familiaris), and goat (Capra hircus) pigments all with AHYTA at the five critical sites have lambda max values of approximately 530 nm, whereas rat (Rattus norvegicus) pigment with AYYTS has a lambda max value of approximately 510 nm, which is accurately predicted by the five-sites rule. However, the observed lambda max values of the orthologous pigments of European rabbit (Oryctolagus cuniculus), white-tailed deer (Odocoileus virginianus), gray squirrel (Sciurus carolinensis), and guinea pig (Cavia procellus) are consistently more than 10 nm higher than the predicted values, suggesting the existence of additional molecular mechanisms for red and green color vision. The inferred amino acid sequences of ancestral organisms suggest that the extant mammalian red and green pigments appear to have evolved from a single ancestral green-red hybrid pigment by directed amino acid substitutions.   相似文献   
2.

Background

The karyotypes of Leptodactylus species usually consist of 22 bi-armed chromosomes, but morphological variations in some chromosomes and even differences in the 2n have been reported. To better understand the mechanisms responsible for these differences, eight species were analysed using classical and molecular cytogenetic techniques, including replication banding with BrdU incorporation.

Results

Distinct chromosome numbers were found: 2n = 22 in Leptodactylus chaquensis, L. labyrinthicus, L. pentadactylus, L. petersii, L. podicipinus, and L. rhodomystax; 2n = 20 in Leptodactylus sp. (aff. podicipinus); and 2n = 24 in L. marmoratus. Among the species with 2n = 22, only three had the same basic karyotype. Leptodactylus pentadactylus presented multiple translocations, L. petersii displayed chromosome morphological discrepancy, and L. podicipinus had four pairs of telocentric chromosomes. Replication banding was crucial for characterising this variability and for explaining the reduced 2n in Leptodactylus sp. (aff. podicipinus). Leptodactylus marmoratus had few chromosomes with a similar banding patterns to the 2n = 22 karyotypes. The majority of the species presented a single NOR-bearing pair, which was confirmed using Ag-impregnation and FISH with an rDNA probe. In general, the NOR-bearing chromosomes corresponded to chromosome 8, but NORs were found on chromosome 3 or 4 in some species. Leptodactylus marmoratus had NORs on chromosome pairs 6 and 8. The data from C-banding, fluorochrome staining, and FISH using the telomeric probe helped in characterising the repetitive sequences. Even though hybridisation did occur on the chromosome ends, telomere-like repetitive sequences outside of the telomere region were identified. Metaphase I cells from L. pentadactylus confirmed its complex karyotype constitution because 12 chromosomes appeared as ring-shaped chain in addition to five bivalents.

Conclusions

Species of Leptodactylus exhibited both major and minor karyotypic differences which were identified by classical and molecular cytogenetic techniques. Replication banding, which is a unique procedure that has been used to obtain longitudinal multiple band patterns in amphibian chromosomes, allowed us to outline the general mechanisms responsible for these karyotype differences. The findings also suggested that L. marmoratus, which was formerly included in the genus Adenomera, may have undergone great chromosomal repatterning.
  相似文献   
3.

Background  

Routine antibiotic prophylaxis following snakebite is not recommended but evidence suggests that it may be common practice in Zimbabwe. This study set out to determine and describe the extent of this practice at Parirenyatwa Hospital, a large teaching hospital in Zimbabwe  相似文献   
4.
5.
6.
Derivatives of 9,10-anthracenedione, or anthraquinone, were shown to inhibit respiratory sulfate reduction by pure cultures of sulfate-reducing bacteria, as well as by crude enrichment cultures. Structure-activity studies showed that an increasing degree of substitution of the anthraquinone nucleus resulted in increasing 50% inhibition (I(inf50)) values for sulfate respiration. Addition of charged ring substituents also resulted in an increase in the I(inf50) concentration. Experiments carried out with 1,8-dihydroxyanthraquinone demonstrated inhibition of hydrogen-dependent sulfate respiration but not hydrogen-dependent sulfite or thiosulfate respiration. Addition of pyruvate resulted in stimulation of sulfate-dependent hydrogen oxidation in the presence of the anthraquinone. These observations, together with a direct demonstration of uncoupling in French press vesicle preparations, suggest that the underlying mechanism of inhibition is uncoupling of ATP synthesis from electron transfer reactions. The low I(inf50) values for inhibition (0.5 to 10 (mu)M) and the relatively low general toxicity of anthraquinones suggest that these compounds may be useful for inhibition of sulfide generation in situations which are incompatible with the use of broadly toxic biocides.  相似文献   
7.
8.
9.
10.
Capuchin monkeys (Cebus apella) share food even if separated by a mesh restraint. Pairs of capuchins were moved into a test chamber in which one of them received apple pieces for 20 min, and the other received carrot pieces for the next 20 min. Previous research had shown a correlation between the rate of food transfer in both directions across female-female dyads. The present study confirmed this result. Reciprocity across dyads can be explained, however, by symmetry in affiliative and tolerant tendencies between two individuals, provided these tendencies determine food sharing. The present study was designed to exclude this symmetry-based explanation by testing each pair (N=16) of adult females on six separate occasions. There existed a significant covariation across tests of sharing in both dyadic directions, a result unexplained by relationship symmetry. Moreover, control procedures (i.e. testing of a food possessor without a partner, or testing of two individuals with the same food or two different foods at the same time) indicated that behaviour during food trials is not fully explained by mutual attraction or aversion. The monkeys take the quality of their own and the partner's food into account, and possessors limit transfers of high-quality foods. Instead of a symmetry-based reciprocity explanation, a mediating role of memory is suggested, and a mirroring of social attitude between partners. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号