首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   7篇
  2022年   3篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   11篇
  2004年   4篇
  2003年   8篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
1.
The ability to memorize changes in the environment is present at all biological levels, from social groups and individuals, down to single cells. Trans-generational memory is embedded subcellularly through genetic and epigenetic mechanisms. Evidence that cells process and remember features of the immediate environment using protein sensors is reviewed. It is argued that this mnemonic ability is encapsulated within the protein conformational space and lasts throughout its lifetime, which can overlap with the lifespan of the organism. Means to determine diachronic changes in protein activity are presented.  相似文献   
2.
We used site-directed labeling of the type 1 ryanodine receptor (RyR1) and fluorescence resonance energy transfer (FRET) measurements to map RyR1 sequence elements forming the binding site of the 12-kDa binding protein for the immunosuppressant drug, FK506. This protein, FKBP12, promotes the RyR1 closed state, thereby inhibiting Ca2+ leakage in resting muscle. Although FKBP12 function is well established, its binding determinants within the RyR1 protein sequence remain unresolved. To identify these sequence determinants using FRET, we created five single-Cys FKBP variants labeled with Alexa Fluor 488 (denoted D-FKBP) and then targeted these D-FKBPs to full-length RyR1 constructs containing decahistidine (His10) “tags” placed within N-terminal (amino acid residues 76–619) or central (residues 2157–2777) regions of RyR1. The FRET acceptor Cy3NTA bound specifically and saturably to these His tags, allowing distance analysis of FRET measured from each D-FKBP variant to Cy3NTA bound to each His tag. Results indicate that D-FKBP binds proximal to both N-terminal and central domains of RyR1, thus suggesting that the FKBP binding site is composed of determinants from both regions. These findings further imply that the RyR1 N-terminal and central domains are proximal to one another, a core premise of the domain-switch hypothesis of RyR function. We observed FRET from GFP fused at position 620 within the N-terminal domain to central domain His-tagged sites, thus further supporting this hypothesis. Taken together, these results support the conclusion that N-terminal and central domain elements are closely apposed near the FKBP binding site within the RyR1 three-dimensional structure.  相似文献   
3.
4.
5.
Calmodulin (CaM) binds to the skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1) with high affinity, and it may act as a Ca(2+)-sensing subunit of the channel. Apo-CaM increases RyR1 channel activity, but Ca(2+)-CaM is inhibitory. Here we examine the functional effects of CaM oxidation on RyR1 regulation by both apo-CaM and Ca(2+)-CaM, as assessed via determinations of [(3)H]ryanodine and [(35)S]CaM binding to skeletal muscle sarcoplasmic reticulum vesicles. Oxidation of all nine CaM Met residues abolished functional interactions of CaM with RyR1. Incomplete CaM oxidation, affecting 5-8 Met residues, increased the CaM concentration required to modulate RyR1, having a greater effect on the apo-CaM species. Mutating individual CaM Met residues to Gln demonstrated that Met-109 was required for apo-CaM activation of RyR1 but not for Ca(2+)-CaM inhibition of the channel. Furthermore, substitution of Gln for Met-124 increased the apo- and Ca(2+)-CaM concentrations required to regulate RyR1. These results thus identify Met residues critical for the productive association of CaM with RyR1 channels and suggest that oxidation of CaM may contribute to altered regulation of sarcoplasmic reticulum Ca(2+) release during oxidative stress.  相似文献   
6.
Tsai J  Sultana R  Lee Y  Pertea G  Karamycheva S  Antonescu V  Cho J  Parvizi B  Cheung F  Quackenbush J 《Genome biology》2001,2(11):software0002.1-software00024
Microarray expression analysis is providing unprecedented data on gene expression in humans and mammalian model systems. Although such studies provide a tremendous resource for understanding human disease states, one of the significant challenges is cross-referencing the data derived from different species, across diverse expression analysis platforms, in order to properly derive inferences regarding gene expression and disease state. To address this problem, we have developed RESOURCERER, a microarray-resource annotation and cross-reference database built using the analysis of expressed sequence tags (ESTs) and gene sequences provided by the TIGR Gene Index (TGI) and TIGR Orthologous Gene Alignment (TOGA) databases [now called Eukaryotic Gene Orthologs (EGO)].  相似文献   
7.
Previous investigations on proteasomal preparations containing insulin-degrading enzyme (IDE; EC 3.4.24.56) have invariably yielded a co-purifying protein with a molecular weight of about 110 kDa. We have now found both in MCF-7 breast cancer and HepG2 hepatoma cells that this associated molecule is the retinoblastoma tumor suppressor protein (RB). Interestingly, the amount of RB in this protein complex seemed to be lower in HepG2 vs. MCF-7 cells, indicating a higher (cytoplasmic) protein turnover in the former vs. the latter cells. Moreover, immunofluorescence showed increased nuclear localization of RB in HepG2 vs. MCF-7 cells. Beyond these subtle differences between these distinct tumor cell types, our present study more generally suggests an interplay between RB and IDE within the proteasome that may have important growth-regulatory consequences.  相似文献   
8.
The product of the ARO10 gene from Saccharomyces cerevisiae was initially identified as a thiamine diphosphate-dependent phenylpyruvate decarboxylase with a broad substrate specificity. It was suggested that the enzyme could be responsible for the catabolism of aromatic and branched-chain amino acids, as well as methionine. In the present study, we report the overexpression of the ARO10 gene product in Escherichia coli and the first detailed in vitro characterization of this enzyme. The enzyme is shown to be an efficient aromatic 2-keto acid decarboxylase, consistent with it playing a major in vivo role in phenylalanine, tryptophan and possibly also tyrosine catabolism. However, its substrate spectrum suggests that it is unlikely to play any significant role in the catabolism of the branched-chain amino acids or of methionine. A homology model was used to identify residues likely to be involved in substrate specificity. Site-directed mutagenesis on those residues confirmed previous studies indicating that mutation of single residues is unlikely to produce the immediate conversion of an aromatic into an aliphatic 2-keto acid decarboxylase. In addition, the enzyme was compared with the phenylpyruvate decarboxylase from Azospirillum brasilense and the indolepyruvate decarboxylase from Enterobacter cloacae. We show that the properties of the two phenylpyruvate decarboxylases are similar in some respects yet quite different in others, and that the properties of both are distinct from those of the indolepyruvate decarboxylase. Finally, we demonstrate that it is unlikely that replacement of a glutamic acid by leucine leads to discrimination between phenylpyruvate and indolepyruvate, although, in this case, it did lead to unexpected allosteric activation.  相似文献   
9.
10.
We have developed a rice (Oryza sativa) genome annotation database (Osa1) that provides structural and functional annotation for this emerging model species. Using the sequence of O. sativa subsp. japonica cv Nipponbare from the International Rice Genome Sequencing Project, pseudomolecules, or virtual contigs, of the 12 rice chromosomes were constructed. Our most recent release, version 3, represents our third build of the pseudomolecules and is composed of 98% finished sequence. Genes were identified using a series of computational methods developed for Arabidopsis (Arabidopsis thaliana) that were modified for use with the rice genome. In release 3 of our annotation, we identified 57,915 genes, of which 14,196 are related to transposable elements. Of these 43,719 non-transposable element-related genes, 18,545 (42.4%) were annotated with a putative function, 5,777 (13.2%) were annotated as encoding an expressed protein with no known function, and the remaining 19,397 (44.4%) were annotated as encoding a hypothetical protein. Multiple splice forms (5,873) were detected for 2,538 genes, resulting in a total of 61,250 gene models in the rice genome. We incorporated experimental evidence into 18,252 gene models to improve the quality of the structural annotation. A series of functional data types has been annotated for the rice genome that includes alignment with genetic markers, assignment of gene ontologies, identification of flanking sequence tags, alignment with homologs from related species, and syntenic mapping with other cereal species. All structural and functional annotation data are available through interactive search and display windows as well as through download of flat files. To integrate the data with other genome projects, the annotation data are available through a Distributed Annotation System and a Genome Browser. All data can be obtained through the project Web pages at http://rice.tigr.org.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号