首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  2019年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
2.
Background

The calmodulin-regulated spectrin-associated proteins (CAMSAPs) belong to a conserved protein family, which includes members that bind the polymerizing mcrotubule (MT) minus ends and remain associated with the MT lattice formed by minus end polymerization. Only one of the three mammalian CAMSAPs, CAMSAP1, localizes to the mitotic spindle but its function is unclear. In Drosophila, there is only one CAMSAP, named Patronin. Previous work has shown that Patronin stabilizes the minus ends of non-mitotic MTs and is required for proper spindle elongation. However, the precise role of Patronin in mitotic spindle assembly is poorly understood.

Results

Here we have explored the role of Patronin in Drosophila mitosis using S2 tissue culture cells as a model system. We show that Patronin associates with different types of MT bundles within the Drosophila mitotic spindle, and that it is required for their stability. Imaging of living cells expressing Patronin-GFP showed that Patronin displays a dynamic behavior. In prometaphase cells, Patronin accumulates on short segments of MT bundles located near the chromosomes. These Patronin “seeds” extend towards the cell poles and stop growing just before reaching the poles. Our data also suggest that Patronin localization is largely independent of proteins acting at the MT minus ends such as Asp and Klp10A.

Conclusion

Our results suggest a working hypothesis about the mitotic role of Patronin. We propose that Patronin binds the minus ends within MT bundles, including those generated from the walls of preexisting MTs via the augmin-mediated pathway. This would help maintaining MT association within the mitotic bundles, thereby stabilizing the spindle structure. Our data also raise the intriguing possibility that the minus ends of bundled MTs can undergo a limited polymerization.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号